•  
  •  
 

DOI

10.25035/pad.2019.03.005

Abstract

Artificial intelligence (AI) and machine learning (ML) have seen widespread adoption by organizations seeking to identify and hire high-quality job applicants. Yet the volume, variety, and velocity of professional involvement among I-O psychologists remains relatively limited when it comes to developing and evaluating AI/ML applications for talent assessment and selection. Furthermore, there is a paucity of empirical research that investigates the reliability, validity, and fairness of AI/ML tools in organizational contexts. To stimulate future involvement and research, we share our review and perspective on the current state of AI/ML in talent assessment as well as its benefits and potential pitfalls; and in addressing the issue of fairness, we present experimental evidence regarding the potential for AI/ML to evoke adverse reactions from job applicants during selection procedures. We close by emphasizing increased collaboration among I-O psychologists, computer scientists, legal scholars, and members of other professional disciplines in developing, implementing, and evaluating AI/ML applications in organizational contexts.

Corresponding Author Information

Manuel F. Gonzalez

Manuel.Gonzalez@baruch.cuny.edu

55 Lexington Ave., Box B8-215 New York, NY 10010

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.