•  
  •  
 

DOI

https://doi.org/10.25035/pad.2020.03.002

Abstract

Criterion-related validation (CRV) studies are used to demonstrate the effectiveness of selection procedures. However, traditional CRV studies require significant investment of time and resources, as well as large sample sizes, which often create practical challenges. New techniques, which use machine learning to develop classification models from limited amounts of data, have emerged as a more efficient alternative. This study empirically investigates the effectiveness of traditional CRV with a variety of profiling approaches and machine learning techniques using repeated cross-validation. Results show that the traditional approach generally performs best both in terms of predicting performance and larger group differences between candidates identified as top or non-top performers. In addition to empirical effectiveness, other practical implications are discussed.

Corresponding Author Information

Kristin S. Allen

Kristin.Allen@shl.com

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.