Mathematics and Statistics Faculty Publications
Mixed Covolume Methods for Elliptic Problems on Triangular Grids
Document Type
Article
Abstract
We consider a covolume or finite volume method for a system of first-order PDEs resulting from the mixed formulation of the variable coefficient-matrix Poisson equation with the Neumann boundary condition. The system may represent either the Darcy law and the mass conservation law in anisotropic porous media flow, or Fourier law and energy conservation. The velocity and pressure are approximated by the lowest order Raviart-Thomas space on triangles. We prove its first-order optimal rate of convergence for the approximate velocities in the L2-and H(div; Q)-norms as well as for the approximate pressures in the L2-norm. Numerical experiments are included.
Repository Citation
Chou, So-Hsiang; Kwak, Do Y.; and Vassilevski, Panayot S., "Mixed Covolume Methods for Elliptic Problems on Triangular Grids" (1998). Mathematics and Statistics Faculty Publications. 7.
https://scholarworks.bgsu.edu/math_stat_pub/7
Publication Date
10-1998
Publication Title
SIAM Journal on Numerical Analysis
Publisher
Society for Industrial and Applied Mathematics
DOI
https://doi.org/10.1137/S0036142997321285
Volume
35
Issue
5
Start Page No.
1850
End Page No.
1861