Mathematics and Statistics Faculty Publications
Flux Recovery and Superconvergence of Quadratic Immersed Interface Finite Elements
Document Type
Article
Abstract
We introduce a flux recovery scheme for the computed solution of a quadratic immersed finite element method introduced by Lin et al. in [13]. The recovery is done at nodes and interface point first and by interpolation at the remaining points. In the case of piecewise constant diffusion coefficient, we show that the end nodes are superconvergence points for both the primary variable p and its flux u. Furthermore, in the case of piecewise constant diffusion coefficient without the absorption term the errors at end nodes and interface point in the approximation of u and p are zero. In the general case, flux error at end nodes and interface point is third order. Numerical results are provided to confirm the theory.
Copyright Statement
Post-print
Repository Citation
Chou, So-Hsiang and Attanayake, Champike, "Flux Recovery and Superconvergence of Quadratic Immersed Interface Finite Elements" (2017). Mathematics and Statistics Faculty Publications. 42.
https://scholarworks.bgsu.edu/math_stat_pub/42
Publication Date
2017
Publication Title
International Journal of Numerical Analysis and Modeling
Start Page No.
88
End Page No.
102