Chemistry Faculty Publications

Document Type

Article

Abstract

The interaction of 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)p (T4MPyP(4+)) with the oligonucleotide DNA duplex [d(GCACGTGC)](2) was studied by two-dimensional (1)H NMR spectroscopy, optical absorbance, circular dichroism, and molecular dynamics simulation employing particle mesh Ewald methods. T4MPyP(4+) is one of the largest aromatic molecules for which intercalative binding to DNA has been proposed, although this has been called into question by recent X-ray crystallographic work [Lipscomb et al. (1996) Biochemistry 35, 2818-2823]. T4MPyP(4+) binding to [d(GCACGTGC)](2) produced a single set of (mostly) upfield-shifted DNA resonances in slow exchange with the resonances of the free DNA. Intra- and intermolecular NOEs observed in the complex showed that the porphyrin intercalates at the central 5'-CG-3' step of the DNA duplex without disrupting the flanking base pairs. Absorption and circular dichroism spectra of the complex also support intercalative binding. Molecular dynamics simulations (using explicit solvent and PME methods), carried out for fully and partially intercalated complexes, yielded stable trajectories and plausible structures, but only the symmetrical, fully intercalated model agreed with NOESY data. Stable hydrogen bonding was observed during 600 ps of MD simulation for the base pairs flanking the binding site.

Publication Date

11-1999

Publication Title

Biochemistry

DOI

https://doi.org/10.1021/bi9913808

Start Page No.

15425

End Page No.

15437

Included in

Chemistry Commons

Share

COinS