Chemistry Faculty Publications

Document Type

Article

Abstract

In the past, the design of light-driven single molecule rotary motors has been mainly guided by the modification of their ground-state conformational properties. Further progress in this field is thus likely to be achieved through a detailed understanding of light-induced dynamics of the system and the ways of modulating it by introducing chemical modifications. In the present theoretical work, the analysis of model organic chromophores and synthesized rotary motors is used for rationalizing the effect of electron-withdrawing heteroatoms (such as a cationic nitrogen) on the topography and branching plane of mechanistically relevant conical intersections. Such an analysis reveals how the character of rotary motion could be changed from a precessional motion to an axial rotational motion. These concepts are then used to design and build quantum chemical models of three distinct types of Schiff base rotary motors. One of these models, featuring the synthetically viable indanylidenepyrroline framework, has conical intersection structures consistent with an axial rotation not hindered by ground-state conformational barriers. It is expected that this type of motor should be capable of funneling the photon energy into specific rotary modes, thus achieving photoisomerization quantum efficiencies comparable to those seen in visual pigments.

Publication Date

4-2014

Publication Title

Journal Of Organic Chemistry

DOI

https://doi.org/10.1021/jo5004289

Start Page No.

3587

End Page No.

3600

Included in

Chemistry Commons

COinS