Chemistry Faculty Publications
Inverse Versus Normal Dithienylethenes: Computational Investigation Of The Photocyclization Reaction
Document Type
Article
Abstract
The understanding of the intimate electronic processes in photochromes is essential to optimize the properties of light-controllable devices. For one of the most studied classes of molecular switches, namely, dithienylethenes, the relative efficiencies of the normal and inverse structures remained puzzling. Indeed, despite a larger ratio of the active antiparallel conformers for the latter, the quantum yields of cyclization of inverse dithienylethenes do not exceed those of its normal counterpart. In the present contribution, we provide the first explanation of this experimental outcome using multireference ab initio quantum chemistry. We demonstrate the existence of a fluorescent intermediate on the S-1 state of the inverse system that generates a photochemically unreactive conformation in the ground state. This study paves the way toward a rational development of efficient molecular photochromes presenting a photon-quantitative response.
Copyright Statement
Publisher PDF
Repository Citation
Perrier, Aurélie; Aloise, Stéphane; Olivucci, Massimo; and Jacquemin, Denis, "Inverse Versus Normal Dithienylethenes: Computational Investigation Of The Photocyclization Reaction" (2013). Chemistry Faculty Publications. 138.
https://scholarworks.bgsu.edu/chem_pub/138
Publication Date
7-2013
Publication Title
Journal Of Physical Chemistry Letters
DOI
https://doi.org/10.1021/jz401009b
Start Page No.
2190
End Page No.
2196