Chemistry Faculty Publications

Document Type

Article

Abstract

Ultrafast transient absorption spectra in the deep to near UV range (212-384 nm) were measured for the [Cu-II(MeOH)(5)Cl](+) complexes in methanol following 255-nm excitation of the complex into the ligand-to-metal charge-transfer excited state. The electronically excited complex undergoes sub-200 fs radiationless decay, predominantly via back electron transfer, to the hot electronic ground state followed by fast vibrational relaxation on a 0.4-4 Ps time scale. A minor photochemical channel is Cu-Cl bond dissociation, leading to the reduction of copper(H) to copper(I) and the formation of MeOH center dot Cl charge-transfer complexes. The depletion of ground-state [Cu-II(MeOH)(5)Cl](+) perturbs the equilibrium between several forms of copper(II) complexes present in solution. Complete re-equilibration between [Cu-II(MeOH)(5)Cl](+) and [Cu-II(MeOH)(4)Cl-2] is established on a 10-500 ps time scale, slower than methanol diffusion, suggesting that the involved ligand exchange mechanism is dissociative.

Publication Date

3-2012

Publication Title

Journal Of Physical Chemistry A

DOI

https://doi.org/10.1021/jp208532u

Start Page No.

2791

End Page No.

2799

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 25
  • Usage
    • Downloads: 583
    • Abstract Views: 12
  • Captures
    • Readers: 27
see details

Included in

Chemistry Commons

Share

COinS