Applied Statistics and Operations Research Faculty Publications

Document Type

Article

Abstract

High-throughput phenotyping systems provide abundant data for statistical analysis through plant imaging. Before usable data can be obtained, image processing must take place. In this study, we used supervised learning methods to segment plants from the background in such images and compared them with commonly used thresholding methods. Because obtaining accurate training data is a major obstacle to using supervised learning methods for segmentation, a novel approach to producing accurate labels was developed. We demonstrated that, with careful selection of training data through such an approach, supervised learning methods, and neural networks in particular, can outperform thresholding methods at segmentation.

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Date

4-25-2020

Publication Title

The Plant Phenome Journal

Publisher

Wiley

DOI

https://doi.org/10.1002/ppj2.20001

Volume

3

Issue

1

Share

COinS