Mathematics and Statistics Faculty Publications

Document Type

Article

Abstract

A flux recovery technique is introduced and analyzed for the computed solution of the primal hybrid finite element method for second-order elliptic problems. The recovery is carried out over a single element at a time while ensuring the continuity of the flux across the interelement edges and the validity of the discrete conservation law at the element level. Our construction is general enough to cover all degreesof polynomialsand gridsof triangular or quadrilateral type. We illustrate the principle using the Raviart–Thomas spaces, but other well-known related function spaces such as the Brezzi–Douglas–Marini (BDM) or Brezzi–Douglas–Fortin–Marini (BDFM) space can be used as well. An extension of the technique to the nonlinear case is given. Numerical results are presented to confirm the theoretical results.

Publication Date

2002

Publication Title

SIAM Journal on Numerical Analysis

Start Page No.

403

End Page No.

415

COinS