Chemistry Faculty Publications

Document Type



The photoinduced excited-state processes in 1,1'-diethyl-2,2'-cyanine iodine are investigated using femtosecond time-resolved pump-probe spectroscopy. Using a broad range of probe wavelengths, the relaxation of the initially prepared excited-state wavepacket can be followed down to the sink region. The data directly visualize the directed downhill motion along the torsional reaction coordinate and suggest a barrierless excited-state isomerization in the short chain cyanine dye. Additionally, ultrafast ground-state hole and excited-state hole replica broadening is observed. While the narrow excited-state wavepacket broadens during pump-probe overlap, the ground-state hole burning dynamics takes place on a significantly longer time-scale. The experiment reported can be considered as a direct monitoring of the shape and the position of the photoprepared wavepacket on the excited-state potential energy surface.

Publication Date


Publication Title

Journal Of Physical Chemistry B


Start Page No.


End Page No.


Included in

Chemistry Commons