Chemistry Faculty Publications

Document Type



We have used several docking algorithms (GRAMM, FTDOCK, DOT, AUTODOCK) to examine protein-protein interactions between plastocyanin (Pc)/photosystem I (PSI) in the electron transfer reaction. Because of the large size and complexity of this system, it is faster and easier to use computer simulations than conduct x-ray crystallography or nuclear magnetic resonance experiments. The main criterion for complex selection was the distance between the copper ion of Pc and the P700 chlorophyll special pair. Additionally, the unique tyrosine residue (Tyr(12)) of the hydrophobic docking surface of Prochlorothrix hollandica Pc yields a specific interaction with the lumenal surface of PSI, thus providing the second constraint for the complex. The structure that corresponded best to our criteria was obtained by the GRAMM algorithm. In this structure, the solvent-exposed histidine that coordinates copper in Pc is at the van der Waals distance from the pair of stacked tryptophans that separate the chlorophylls from the solvent, yielding the shortest possible metal-to-metal distance. The unique tyrosine on the surface of the Prochlorothrix Pc hydrophobic patch also participates in a hydrogen bond with the conserved Asn(633) of the PSI PsaB polypeptide (numbering from the Synechococcus elongatus crystal structure). Free energy calculations for complex formation with wild-type Pc, as well as the hydrophobic patch Tyr(12)Gly and Pro(14)Leu Pc mutants, were carried out using a molecular mechanics Poisson-Boltzman, surface area approach (MM/PBSA). The results are in reasonable agreement with our experimental studies, suggesting that the obtained structure can serve as an adequate model for P. hollandica Pc-PSI complex that can be extended for the study of other cyanobacterial Pc/PSI reaction pairs.

Publication Date


Publication Title

Biophysical Journal


Biophysical Society

Start Page No.


End Page No.


Included in

Chemistry Commons