Master of Technology Management Plan II Graduate Projects

Date of Award

Fall 12-16-2016

Document Type


Degree Name

Master of Technology Management-Engineering Technology


Engineering Technologies

First Advisor

Mohammed Mayyas

Second Advisor

Todd C. Waggoner

Third Advisor

Christopher Kluse


This thesis work is about the design of a modified Stewart platform manipulator for misalignment correction. The common version of the Stewart platform uses six actuators. The traditional Stewart platform of this kind has a moving top plate and a fixed base plate. However, in this research, the modified design of the traditional Stewart platform is studied. It is designed to be an easy connect-disconnect platform that can wrap around different structures with different cross sections and symmetrically designed. It is able to adjust position easily by using four identical but independent linear actuators populated evenly in two parts fastened to the top and bottom base by ball joints with each part been symmetrical to the other.

To design two symmetrical parts and an adjustable clamp are a major objective of the thesis. One symmetrical part flipped upside down produces the other. The adjustable clamp was printed in 3D and can be used to align regular structural shapes especially circle of various diameter. To correct the misalignment, a failure study was carried out to determine the two equal but opposite loads required to correct misalignment in two plastic beams. Five loads were applied which showed that the smaller the load, the better the misalignment. This study showed that it is better to fix the base at a location where it does not move. To investigate that the modified Stewart platform can resist structure stiffness, the actuator assembly was analyzed using ANSYS software. The results showed that the deformation and maximum stress is less that the structure stiffness, which proves why the assembly can resist structural stiffness. The results support that the modified Stewart platform can be used for misalignment correction.