May 2017

Correlation Between Volitional and Functional Balance Control in Healthy Young Athletes

Kerri Grothaus
Bowling Green State University, kerrig@bgsu.edu

Andrea Cripps
Bowling Green State University, acripps@bgsu.edu

Adam Fullenkamp
Bowling Green State University, dullena@bgsu.edu

Matt Laurent
Bowling Green State University, laurent@tarleton.edu

Follow this and additional works at: http://scholarworks.bgsu.edu/jsmahs

Part of the Biomechanics Commons, Exercise Science Commons, Motor Control Commons, Other Kinesiology Commons, Rehabilitation and Therapy Commons, Sports Medicine Commons, and the Sports Sciences Commons

Recommended Citation
DOI: 10.25035/jsmahs.03.01.08
Available at: http://scholarworks.bgsu.edu/jsmahs/vol3/iss1/8

This Undergraduate Student Abstract is brought to you for free and open access by the Human Movement, Sport and Leisure Studies at ScholarWorks@BGSU. It has been accepted for inclusion in Journal of Sports Medicine and Allied Health Sciences: Official Journal of the Ohio Athletic Trainers Association by an authorized editor of ScholarWorks@BGSU.
Correlation Between Volitional and Functional Balance Control in Healthy Young Athletes

Kerri Grothaus, ATC, Andrea E. Cripps, PhD, ATC, Matt Laurent, PhD, Adam Fullenkamp, PhD.

Human Movement, Sport, and Leisure Studies; Bowling Green State University.

CONTEXT
Balance testing is an integral component of the evaluation of the concussed athlete. Balance deficits resulting from sensory-integration problems can be determined with a multitude of laboratory-based, computerized dynamic posturography measures, however current protocols currently utilize only one of these measures of balance. The Stability Evaluation Test (SET) protocol, utilizes the 6 testing conditions of the Balance Error Scoring System (BESS) to provide an objective analysis of the athlete's functional balance control based on the individual's postural sway velocity. The Limits of Stability (LOS) test quantifies impairments in an individual's ability to volitionally displace their center of gravity (COG) to their stability limits without losing balance, however, the LOS is not widely used in concussion protocols. A correlation between the LOS test and SET has not yet been established in a healthy, non-concussed population, therefore it is unknown if the LOS is a clinically relevant measure.

OBJECTIVE
To determine if volitional and functional balance control are correlated.

PATIENTS or OTHER PARTICIPANTS
Ninety-eight healthy intercollegiate athletes participated (age 20 ± 1.6 years, height 185.60 ± 7.16 cm).

INTERVENTIONS
All participants completed the SET and LOS testing protocols on the Natus NeuroCom® VSR Sport System.

MAIN OUTCOME MEASURES
Reaction time (sec), movement velocity (deg/sec), endpoint excursion (%), maximal excursion (%), and directional control (%) on the LOS test; sway velocity (deg/sec) on the SET.

RESULTS
The LOS was not correlated with SET for any of the outcomes (Reaction Time, R = -0.068; Movement Velocity R = 0.035; Endpoint Excursion R= -0.116; Maximal Excursion R= -0.055).

CONCLUSIONS
The lack of significant correlation between LOS and SET may indicate different construct measures. Clinicians should consider incorporating both measures into current concussion protocols.
REFERENCES

KEY WORDS: concussion, balance, volitional control