10-24-2011

Improving Deaf Accessibility in Remote Usability Testing

Jerry Schnepp
Bowling Green State University - Main Campus, schnepp@bgsu.edu

Brent Shiver

Follow this and additional works at: https://scholarworks.bgsu.edu/vcte_pub

Repository Citation

Schnepp, Jerry and Shiver, Brent, "Improving Deaf Accessibility in Remote Usability Testing" (2011). Visual Communication and Technology Education Faculty Publications. 11.
https://scholarworks.bgsu.edu/vcte_pub/11

This Presentation is brought to you for free and open access by the Visual Communication at ScholarWorks@BGSU. It has been accepted for inclusion in Visual Communication and Technology Education Faculty Publications by an authorized administrator of ScholarWorks@BGSU.
ABSTRACT
For studies involving Deaf participants in United States, remote usability testing has several potential advantages over face-to-face testing, including convenience, lower cost and the ability to recruit participants from diverse geographic regions. However, current technologies force Deaf participants to use English instead of their preferred language, which is American Sign Language (ASL). A new remote testing technology allows researchers to conduct studies exclusively in ASL at a lower cost than face-to-face testing. The technology design facilitates open-ended questions and is reconfigurable for use in a variety of studies. Results from usability tests of the tool are encouraging and a full-scale study is underway to compare this approach to face-to-face testing.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Interaction styles (e.g., commands, menus, forms, direct manipulation)

General Terms

Keywords
Remote Usability Testing, Accommodations for the Deaf

1. INTRODUCTION
One barrier to better Deaf accessibility to technology is the current process of usability testing itself. Members of the Deaf community in the United States use American Sign Language (ASL), not English as their preferred language. Although face-to-face usability testing protocols can incorporate certified ASL/English interpreters [1], barriers of scheduling, cost and localization remain. Hearing researchers must coordinate not only the schedules of their team and the schedules of the Deaf participants, but also the schedules of certified interpreters.

The cost of interpreters further confounds scheduling issues since rates for certified interpreters are typically $50.00 per hour with a two-hour minimum. This motivates researchers to schedule back-to-back testing sessions, imposing further time constraints and stress on the test team. As previously noted [1], the resulting low numbers of participants can interfere with statistical analysis.

Localization is another challenge of face-to-face testing [2]. Testing of this kind typically draws users from a limited geographic area, which often results in an adversely small numbers of participants. Further, participants drawn exclusively from a particular locale may yield skewed results when compared to a more geographically diverse sample.

2. CHALLENGES OF REMOTE TESTING
In contrast, remote testing can be done asynchronously, easing the burden of scheduling [3], and has been used in recent years to evaluate web sites, virtual prototypes, and software [4]. This technology allows researchers to test with large, geographically diverse populations. Data are collected asynchronously over a network and stored in a central database, leading to faster collection and lower costs [5].

Remote testing holds the potential to tap a large, geographically diverse Deaf population in a more cost-effective manner [6], particularly since many members of the Deaf community have embraced the Internet as a preferred means of communication [7]. Through the use of webcams, the Deaf communicate directly in ASL and avoid the necessity of typing.

However a significant language barrier remains. Remote testing technologies designed for hearing audiences in the United States use written English. English is not a viable option because the average reading fluency of a Deaf adult is at the fourth-grade level [8]. American Sign Language (ASL) is the preferred language of the Deaf community, and differs radically from English. Asking Deaf participants to test with written English is asking them to test in a second language. This barrier motivates a new approach to remote usability testing.

3. A MORE DEAF-FRIENDLY APPROACH
To lower barriers and increase the size of the participant pool, we have developed a reconfigurable, web-based evaluation tool that uses ASL exclusively. The goal is to capitalize on the advantages of remote testing – flexibility of scheduling and lowered cost – but without the barriers posed by written English. All information and instructions in this new tool, from informed consent to post-test questionnaire, are presented in ASL.

Figure 1 shows the screen layout for a closed-ended question. Recordings of the test moderator appear in the upper right window and test stimuli appear on the left. The test participant views instructions from the test moderator and observes test stimuli. The participant can view a stimulus for as long as s/he wants and
and a webcam control. The participant signs a response in ASL. The test moderator asks the participant to sign their response for an innovative approach for capturing responses via the participant’s webcam. The tool also provides for open-ended questions via an innovative method for inserting them into the tool. Since the tool itself is language-neutral, it has the potential for use with any type of signed language, as well as for populations having low literacy levels.

7. RESULTS
Early results from usability testing (IRB# 101609JSCDMR1) are promising. Of a group of eight users, seven indicated that the indexing technique was easily or very easily understood, and all agreed or strongly agreed with the statement “ASL is better than English for this type of test.” Participants described the test approach as “inspired”, “excellent”, “super-great”, and “beneficial to the Deaf community”. The most common suggestion was to include a way to replay the facilitator’s instructions, and the authors are in the process of implementing this feature.

8. FUTURE WORK
We are collecting data with this new tool to compare with data previously collected via face-to-face testing. Ultimately, we want to make an open source version of this tool for distribution.

9. REFERENCES