Letter to the Editor

Stathis Avramidis
Leeds Metropolitan University

Follow this and additional works at: https://scholarworks.bgsu.edu/ijare

Recommended Citation
DOI: https://doi.org/10.25035/ijare.02.02.02
Available at: https://scholarworks.bgsu.edu/ijare/vol2/iss2/2

This Letter to the Editors is brought to you for free and open access by the Journals at ScholarWorks@BGSU. It has been accepted for inclusion in International Journal of Aquatic Research and Education by an authorized editor of ScholarWorks@BGSU.
I would like to comment on three things: the IJARE editorial in Volume 1, Number 3 (Langendorfer, 2007); Brewster’s (2007) letter to the editor in the same issue; and Leclerc’s (2007) study in the first issue of IJARE about whether a victim is more or less likely to survive if rescued by a pool lifeguard trained by one organization than a lifeguard trained by another organization.

In your editorial from the third issue (Langendorfer, 2007), you referred to a didactic story about cooking a ham as a metaphor to explain that things happen in the aquatic industry the way they do because we traditionally accept them as they are. Because the International Journal of Aquatic Research and Education is dedicated to disseminating not only research but also aquatic education, I would like to take this opportunity to draw attention to another story that illustrates this same issue, while also raising another one specifically for water safety.

According to this story, a team of scientists placed five monkeys in a cage along with a ladder with some bananas on it. Every time one monkey stepped onto the ladder, the scientists splashed the rest of the monkeys with cold water. After a little while, every time a monkey stepped onto the ladder, the other monkeys attacked and hit him heavily. After a relatively short period of time, no monkey stepped onto the ladder anymore, despite their desire to get the bananas. Then the scientists decided to replace one of the monkeys with a new one. The first thing that the new monkey did was try to step onto the ladder. Quickly, the rest of the monkeys attacked and hit him heavily. After a number of such attacks, the new monkey learned not to step onto the ladder, although he did not know why. Later a second monkey was replaced with a new one, and the same thing happened. This time, the first replacement monkey participated in the kicking and the hitting of the second. A third monkey was replaced and, again, the same happened. A fourth monkey came and the kicking and hitting continued. Finally, the fifth monkey was replaced. So now there was a team of five monkeys, and, although they had never been splashed with cold water, they kicked and hit each monkey who tried to climb the ladder. If we were able to ask the monkeys “Why do you hit whoever tries to step on the ladder?” I can imagine that they might answer, “I do not know but this is how we do things here!”

This story completely agrees with Langendorfer’s story and its implications: It is just the way we do things in aquatics. How do those two stories apply to the aquatic-safety or lifesaving industry? One example has to do with accepted and proposed rescue techniques. For over a century lifeguards used body-contact rescue techniques, although other organizations considered them the last option after “swim with aid” rescue techniques. Generally, most organizations replicated traditional techniques, having taken them from previous versions without critically evaluating their quality and effectiveness (Avramidis, 2001). Others changed a particular technique only in an attempt to differentiate themselves from other organizations. Some organizations just claimed to have differences in rescue philosophy (Giles, 1994; Giles & Giles, 1998). As a result, rescue techniques rarely have changed beyond changes occurring in rescue equipment (Wright, 2006). One of those changes was the creation of the rescue tube. In his letter to the editor, Brewster
Avramidis (2007) accurately argued that although the rescue tube was primarily designed to provide buoyancy to the casualty in open-water rescue, now it is used to provide buoyancy and support to pool lifeguards with limited swimming ability.

To me, the main question should not be whether we should or should not use the rescue tube to support the less skillful pool lifeguards but, rather, why we still ever teach body-contact tows when we know that they are dangerous for the lifeguard and they require exceptionally strong swimming ability. The answer to the first question, with which I completely agree, was given by Brewster (2007):

The organizations decided to use the rescue tube primarily to support the lifeguard rather than the victim. . . . A primary reason was that this allowed for the employment of lifeguards with lesser swimming skills and more limited training than was previously acceptable, which probably made it easier and cheaper to recruit lifeguards. (p. 196)

Because lifeguarding is not highly paid, there are not enough people willing to do it, and, therefore, we do not have the option of choosing the most skillful swimmers. In a sample of 2,281 lifeguards, there were 100 who felt unable to perform an effective rescue in the water (Griffiths, Vogelsong, & Steel, 1997). What does this tell us? It tells us that either the rescue techniques are too difficult to perform or the lifeguards are not sufficiently skillful swimmers.

The solution to the first issue is to make the rescue techniques easier to perform. The solution to the second issue is to increase the rate of pay for lifeguards to attract more people with stronger swimming skills. It seems to me that the second solution is not particularly realistic in today’s economy, and therefore it is up to us aquatic professionals to solve the problem by improving the rescue techniques using what technological achievements offer as substitutions for swimming ability; in other words, we should use rescue tubes for supporting pool lifeguards during rescues. I agree with Brewster that swimming ability is and will always be an important component qualifying one as a surf lifeguard. In swimming pools, however, I believe the situation is completely different. We do not have the option of using substitute methods for swimming ability, like powerboats or jet skis. If, therefore, our current option is to employ less competent swimmers as pool lifeguards and provide them with the rescue tube and new techniques to support its use, then we must continue to do so. Therefore organizations that continue to teach lifesaving body-contact rescue techniques instead of using the rescue tube, which involves fewer demands in terms of swimming efficiency, will look like the monkeys who claim that “this is how we do things here.” From this point of view, I assume that the inventor of the rescue tube, Pete Peterson, “would not be turning over in his grave” (Brewster, 2007, p. 196) but, rather, that he would be happy because he invented a critical rescue aid that can “save” the lifeguard profession, allowing it to continue to exist and even to grow. Without the rescue tube we would definitely have had more drowning victims, because we would have had fewer lifeguards!

Brewster’s (2007) second argument was that “using the rescue tube to keep lifeguards afloat also slows the approach to a victim, which is undoubtedly the most critical part of a rescue” (p. 196). This is a solid and reasonable argument supported by the findings of Leclerc (2007), who stated that “swimming with the rescue tube across the chest increases form drag, slowing the rescuer down [while] speed is important because time for rescue, assessment, and rescue breathing is very short
when considering the survival of a victim” (p. 41). Although this is undoubtedly true, I believe that we can help the lifeguard profession by seeing the glass of water as half full rather than half empty. What I mean is that use of the rescue tube by pool lifeguards does not dramatically delay the rescue process. In order to explain that, we first need to define the maximum distance that pool lifeguards need to be able to swim when approaching a victim. Given the fact that the biggest Olympic-size swimming pool is 50 × 25 m (Fédération Internationale de Natation, 2006), the longest distance that a lifeguard might need to swim would be if the casualty drowned precisely in the middle of the pool. If the lifeguard started swimming from the side of the pool (swimming a width instead of a length) that means that he or she would need to swim only about 12.5 m to reach the victim at the center of the pool. According to Leclerc, even the least competent participants (Red Cross lifeguards in Figure 1, p. 37) were able to swim 25 yd (22.75 m) in about 28 s. That means that they could swim the required 12.5 m to reach a victim at the place in the swimming pool that is the farthest away possible in 15.38 s. According to the 10/20 protection rule (which requires 20 s for the approach), that is an acceptable time for approaching the victim (Ellis & White, 1994). It seems, therefore, that although we would like to have faster lifeguards in swimming pools, because they fit better with the ideal lifeguard we have in mind, in fact this is an old, outdated perception of the lifeguard profession. A fast lifeguard can be an effective lifeguard, but this does not mean that a slower lifeguard (at least as it was shown in Leclerc’s study) would be ineffective. It seems to me that denying the conclusions of Leclerc’s observations is like saying “‘I don’t know why I consider a slower pool lifeguard ineffective, but this is how we do things here!’”

Stathis Avramidis, PhD student, MSc, BEd
Part-time lecturer in Aquatics, Leeds Metropolitan University (UK)

References