To the Editor

B. Chris Brewster
United States Lifesaving Association

Follow this and additional works at: https://scholarworks.bgsu.edu/ijare

Recommended Citation
DOI: https://doi.org/10.25035/ijare.04.04.03
Available at: https://scholarworks.bgsu.edu/ijare/vol4/iss4/3

This Letter to the Editors is brought to you for free and open access by the Journals at ScholarWorks@BGSU. It has been accepted for inclusion in International Journal of Aquatic Research and Education by an authorized editor of ScholarWorks@BGSU.
To the Editor

In their article, “Do Lifeguards Monitor the Events They Should?” Lanagan-Leitzel and Moore reported on observations of whether lifeguards continually scan their zone of coverage, carefully examining patrons whose behavior is consistent with drowning or distress. They made their observations of lifeguards trained under a single system based on activity at certain pools. Their article included objective research but also various assertions not directly addressed by the research.

In their introductory material, the authors used a variety of statistics from the United States Lifesaving Association, suggesting that our statistics cover 95% of all lifeguarded beaches in the U.S. This seems unlikely to me. These statistics are disproportionately gleaned from surf beaches and are probably highly representative of activities there but less so with respect to non-surf beaches.

Although pools are not included in the USLA statistics, after citing the USLA statistics, the authors state that “The rescue rate at lifeguarded beaches and pools dramatically surpasses the drowning rate.” There is no evidence, of which I am aware, that the safety record at pools is directly comparable to that at beaches. It may be or it may not be. Indeed, since rescues are a relatively rare occurrence at pools, the rate may be quite different.

The authors state a perception, after reviewing various lifeguard training manuals for various environments, that “. . . the predominant focus of training is on rescue and first aid, not on surveillance.” They base this on the relative number of chapters devoted to surveillance versus other skills. The implication is that there is inadequate attention devoted to surveillance.

In my view, the number of chapters devoted to a subject is not the only measure of relative importance. Some skills are more complex than others. Surf lifeguards use swim fins, rescue buoys, rescue tubes, rescue surfboards, boats, vehicles, and a variety of other equipment. They must be trained in underwater search and recovery. These are just a few examples. A given skill may be more complicated to learn, thus requiring extensive attention, regardless of its relative importance.

In the case of the USLA, the surveillance chapter of the manual starts with the following sentence, “To prevent injuries or successfully intervene before a drowning occurs, the primary skill a lifeguard must employ is effective observation.” In most cases, especially with the noise and crowd conditions at a beach, if you don’t see someone in distress, you can’t rescue them. Nevertheless, in 2009, at reporting USLA affiliated beaches (as of reports received by July 20, 2010), there was estimated attendance of 317 million people, 82,969 people were rescued, and there were 21 drowning deaths in protected areas. I would suggest this indicates quite effective surveillance, prevention, and response.

The authors remark that different manuals have different approaches to the task of scanning. They note, for example, different techniques in the American Red Cross manual and the Starfish Aquatics Institute training manual, stating that one approach “may lead to a haphazard scanning process,” whereas another “may promote frequent examinations of weaker swimmers and more coverage...
of the assigned zone.” They offer no evidence of this and their research does not compare the two.

The different aquatic environments (waterparks, pools, inland beaches, and surf) involve similar, but by no means identical, lifeguarding skills. With respect to surveillance, over 80% of rescues at surf beaches are due to rip currents, and these currents are visually evident to experienced lifeguards. For this reason, effective lifeguards at surf beaches tend to appropriately focus a disproportionate amount of their attention on these areas. There are no rip currents in pools. There may be good reasons to employ different surveillance methods in different environments.

Similarly, the authors suggest certain norms of people in distress for all environments. In my experience, people who become distressed in rip currents do not normally behave the same way as those in non-surf environments. In fact, there is no evidence that the so-called instinctive drowning response that they cite applies to rip currents. While most surf beach rescues involve patrons who are fairly good swimmers and who are swimming against a rip current, most non-surf rescues seem to involve poor or nonswimmers, perhaps distressed merely by water depth.

Scientific study of the nature attempted by Lanagan-Leitzel and Moore is lacking in lifeguarding and much needed. Whether the research they conducted on lifeguards trained under a single pool lifeguard training system applies to those trained under other pool lifeguard training systems is unknown. Whether pool lifeguard surveillance study has relevance for the beach or surf environment is also unknown. We need more evidence based research in lifeguarding; we need to carefully separate evidence from opinion; we need to avoid generalizing about lifeguarding; and we need to test the many theories that have arisen to a status of presumed fact.

B. Chris Brewster, President
United States Lifesaving Association