6-2011

Heteroepitaxial Growth Of Colloidal Nanocrystals Onto Substrate Films Via Hot-injection Routes

Krishna P. Acharya
Elena Khon
Timothy O'Conner
Ian Nemitz
Anna Klinkova

See next page for additional authors

Follow this and additional works at: https://scholarworks.bgsu.edu/chem_pub

Part of the Chemistry Commons

Repository Citation
Acharya, Krishna P.; Khon, Elena; O’Conner, Timothy; Nemitz, Ian; Klinkova, Anna; Khnayzer, Rony S.; Anzenbacher, Pavel Jr.; and Zamkov, Mikhail, "Heteroepitaxial Growth Of Colloidal Nanocrystals Onto Substrate Films Via Hot-injection Routes" (2011). Chemistry Faculty Publications. 56.
https://scholarworks.bgsu.edu/chem_pub/56

This Article is brought to you for free and open access by the Chemistry at ScholarWorks@BGSU. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of ScholarWorks@BGSU.
Heteroepitaxial Growth of Colloidal Nanocrystals onto Substrate Films via Hot-Injection Routes

Krishna P. Acharya,†,§ Elena Khon,†,§ Timothy O’Conner,†,§ Ian Nemitz,§ Anna Klinkova,†,§ Rony S. Khayzer,†,§ Pavel Anzenbacher,†,§ and Mikhail Zamkov†,§,*

†The Center for Photochemical Sciences, ‡Department of Chemistry, and §Department of Physics, Bowling Green State University, Bowling Green, Ohio 43403, United States

Processing of optoelectronic devices from solutions of colloidal nanocrystals (NCs) is emerging as a powerful alternative to conventional methods of thin film deposition requiring high-vacuum and high-temperature conditions. In addition to bulk material properties, inorganic NCs offer a range of unique characteristics arising from their nanoscale dimensions, which enable continuous tuning of NC energy levels, as well as solution processing of as-prepared nanoparticle colloids into thin film devices. Owing to these advantages, deployment of colloidal NCs for practical applications has been actively explored in the past decade through the development of novel NC-based materials that potentially can reduce the cost and simultaneously improve the performance of several important optoelectronic technologies, including lasers,1–3 solar cells,4–22 photocatalysts,23–26 light-emitting diodes (LEDs),27–34 bio-labels,35–37 thermoelectric elements,38,39 field-effect transistors,40–45 magnetic doping,46,47 and memory elements.48–52

One of the main challenges concerning the development of NC-based device applications is the ability to couple colloidal nanoparticles onto a substrate. Since inorganic NCs are fabricated in solutions, their surfaces retain a layer of organic ligands, which renders the nanoparticle soluble and simultaneously serves as a protective barrier between electrical charges in NCs and their external environment. The presence of such an organic shell prevents an efficient coupling of colloidal NCs to a substrate material, which is a crucial step in the development of many device applications spanning the areas of photovoltaics, photocatalysis, and solid state lighting. For instance, the coupling of NCs onto TiO2 substrates in NC-sensitized solar cells is often mediated by introducing organic linkers,17,53–56 which results in an unwanted reduction of the charge transfer rate, and ensuing decline in the device performance. Meanwhile, ligand-free growth of semiconductor NCs via SILAR (successive ionic layer adsorption and reaction) or chemical bath deposition (CBD) of the semiconductor material onto TiO218,19,21,57–59 often leads to inferior stability of resulting NCs and wide dispersion of their sizes as compared to organically passivated counterparts.60

Here we demonstrate a robust and cost-effective method for coupling semiconductor NCs onto a substrate, which relies on the direct nucleation and growth of organically passivated NCs onto TiO2 films submerged in organic solvents. Grown directly from the substrate, these nanocrystals represent a novel type of “surface-bound” quantum dots that form heteroepitaxial relationships with the substrate film to enable an efficient interdomain charge transfer at the NC/substrate interface, meanwhile, being fabricated via hot-injection routes, these NCs

ABSTRACT Hot-injection synthesis of colloidal nanocrystals (NCs) in a substrate-bound form is demonstrated. We show that polycrystalline films submerged into hot organic solvents can nucleate the heteroepitaxial growth of semiconductor NCs, for which the ensuing lattice quality and size distribution are on the par with those of isolated colloidal nanoparticles. This strategy is demonstrated by growing lead chalcogenide NCs directly onto solvent-submerged TiO2 substrates. The resulting PbX/TiO2 (X = S, Se, Te) nanocomposites exhibit heteroepitaxial interfaces between lead chalcogenide and oxide domains and show an efficient separation of photoinduced charges, deployable for light-harvesting applications. The extendibility of the present method to other material systems was demonstrated through the synthesis of CdS/TiO2 and Cu2S/TiO2 heterostructures, fabricated from PbS/TiO2 composites via cation exchange. The photovoltaic performance of nanocrystal/substrate composites comprising PbS NCs was evaluated by incorporating PbS/TiO2 films into prototype solar cells.

KEYWORDS: photovoltaics · nanorods · dye-sensitized · Schottky · titanium dioxide

* Address correspondence to zamkovm@bgsu.edu.

Received for review March 21, 2011 and accepted April 28, 2011.

Published online April 28, 2011 10.1021/nn201064n

© 2011 American Chemical Society
exhibit a narrow distribution of diameters, which is critical for controlling the alignment of energy levels at material boundaries. The photovoltaic performance of fabricated NC/substrate films was demonstrated here by incorporating indium–tin-oxide (ITO)-supported nanocrystal/substrate PbS/TiO₂ composites into solid-type NC-sensitized solar cell architecture.

From the synthetic standpoint, the present method modifies the traditional strategy for growing semiconductor NCs in solutions, to allow a preferential growth of nanocrystals, such as PbX, CdX, and Cu₂X (X = S, Se, Te) onto a polycrystalline substrate, which is placed into the reaction flask prior to the injection of precursors. While in this work, a PbS/TiO₂ nanocrystal–substrate combination was used as a model system along with experimental demonstration of a few other material systems, including PbX/TiO₂ (X = Se, Te), CdS/TiO₂, and Cu₂S/TiO₂, it is anticipated that, based on the similarity of synthetic methods between substrate-bound and isolated colloidal NC/oxide heterostructures, the reported technique could also be extended to other combinations of materials simply by adapting the existing synthetic protocols that were reported previously for the respective colloidal heterostructures." 61–73

RESULTS AND DISCUSSION

The general strategy for growing colloidal nanocrystals onto a substrate via hot-injection routes is based on a two-step procedure, which includes sintering of the film and the subsequent growth of NCs onto a developed substrate via injection of organometallic precursors. In this work, a mesoporous oxide film was prepared either from commercial or homemade TiO₂ nanoparticle pastes by sintering its suspension onto an ITO covered glass at 450–500 °C for 1 h. After cooling, the TiO₂ substrate was attached to a metal wire and placed into a three-neck flask containing a degassed mixture of oleylamine and oleic acid. To avoid scratching of the film due to stirring, two identical TiO₂ substrates were coupled together with their blank (glass) surfaces facing outward. This design allowed a free flow of hot reaction solvents near the TiO₂ surface of both substrates without causing any detectable damage to nanoparticle films.

The details of experimental procedures for growing PbX (X = S, Se, Te), CdS, and Cu₂S NCs on the surface of TiO₂ films are provided in the Methods and Supporting Information Sections. Typically, to fabricate PbS/TiO₂ nanocomposite films, a TiO₂ substrate was lowered into a three-neck flask containing 1 mL of oleylamine (OLAM), and 0.5 mL of oleic acid (OA). The mixture was then heated up to 140–180 °C, at which point Pb and S precursors, were simultaneously injected initiating the growth of PbS NCs. After 10–20 min of the growth time, the substrate was pulled out of the solution, and the heating mantle was removed from the flask. To ensure that isolated PbS NCs are completely removed from the sample upon completion of the synthesis, the PbS/TiO₂ film was repeatedly washed with toluene.
until the changes in its absorption profile became negligible. The absence of isolated nanocrystals was then confirmed using a TEM analysis of random areas sampled from the PbS/TiO$_2$ film onto a carbon grid.

Typical TEM images of PbS/TiO$_2$ film fragments in Figure 1 indicate the formation of highly crystalline PbS NCs on the surface of TiO$_2$ grains. Likewise, growth of PbSe and PbTe NCs on TiO$_2$ substrates has resulted in the uniform coverage of oxide surface with lead chalcogenide nanoparticles, as shown in Supporting Information Figures SF1 (PbSe) and SF2 (PbTe). Depending on the initial concentrations of injection precursors and the reaction temperature, the average size of PbS NCs could be tuned from 2.5 to 5.0 nm, covering the full range of NC diameters that are expected to produce an efficient photoinduced charge transfer to a TiO$_2$ acceptor domain (see Figure 5). Depending on the specifics of the synthesis, the size dispersion of substrate-bound PbS domains ranged from 6% to 14% (see Figure 3), which is somewhat broader than the 5–10% range observed for isolated PbS(Te)/TiO$_2$ heterostructured nanocrystals grown via conventional colloidal routes (Figure 2a).24,75 The crystalline nature of PbS domains was confirmed by the observation of characteristic lattice fringes (Figure 2f,g) that were indexed to known spacing values of the rock-salt cubic (fcc) crystal phase. Judging by the low density of lattice defects observed in investigated specimens, we conclude that the overall crystal quality of PbS “islands” grown on a TiO$_2$ substrate is comparable to that of PbS NCs grown on suspended TiO$_2$ nanoparticles in solutions (Figure 2a).

The analysis of TEM images in Figures 1a–d and 2b indicates that both small- and large-diameter PbS NCs appear to be evenly distributed on the surface of oxide grains. Such a growth mechanism has been previously observed for PbS/TiO$_2$ heterostructures, fabricated via chemical bath deposition (CBD),20 where the formation of islandlike PbS domains was attributed to the minimization of the PbS/TiO$_2$ interfacial energy associated with the significant strain between PbS and TiO$_2$ lattices. Unfortunately, the size-dispersion of PbS NCs could not be controlled within the CBD approach due to the lack of synthetic means for modulating the surface tension of growing PbS domains. In the present method, the use of hot-injection approach enables an additional degree of freedom for controlling the shape of composite nanoparticles, associated with the presence of surface-passivating ligands. These molecules modulate the surface tension of growing crystallites, which allows the accommodation of the misfit-induced interfacial strain between the two semiconductor materials and coercion of the narrow distribution of domain sizes. While the smallest dispersion of PbS diameters was achieved when both NC and oxide domains were dressed with surface ligands (5.1%, Figure 2a), the substrate-bound deposition of PbS NCs onto ligand-free TiO$_2$ films has also proven to facilitate a satisfactory control over NC growth, resulting in a modest 6–14% of the size distribution (Figure 3). Furthermore, as demonstrated in our previous study on solvent-dispersed PbS/TiO$_2$ heterostructures,74 the growth of PbS NCs on TiO$_2$ is expected to occur at locations of lower interfacial stress, which allows for near-epitaxial relationships at the PbS/TiO$_2$ boundary and the ensuing low-energy expansion of the PbS lattice. These locations are likely to contain irregularities of the TiO$_2$ lattice that promote a preferential merging of 001 and 100 faces of anatase TiO$_2$ and rock-salt PbS crystal lattices (Supporting Information, Figure SF3), which otherwise correspond to a substantial 6.9% lattice mismatch.

A ligand-induced approach to controlling the shape of PbS domains was employed through a combination...
of oleic acid (OA) and oleylamine (OLAM) surfactant molecules. By using a binary mixture of stabilizing ligands, we were able to continuously tune the surface tension of growing nanocrystals, which affects the thermodynamic balance between the surface and interfacial energies of PbS nanoparticles, ultimately changing their shapes. Typically, the formation of large diameter PbS NCs (Figures 1d,g) was favored when the molar ratio of OA (used for the dissolution of Pb precursor) to OLAM was less than 0.6, and the molar ratio of Pb to octadecene (ODE) was 0.4—0.5. On the other hand, if the concentration of OA was high (OA/OLAM ≥ 1), the growth of large-diameter PbS domains was suppressed, and the formation of small, uniformly distributed PbS domains became dominant (Figures 1b,f).

While the ligand concentration plays an important role in determining the overall shape of PbS NCs, the effect of other synthetic variables, such as the reaction temperature and the growth time was found to be less significant. According to the statistical distribution of PbS sizes, reflecting different growth conditions (Figure 3), the change in the solution temperature from 180 °C to 280 °C produces less than 10% increase in the average NC diameter. Likewise, there is only an 8% enhancement in the size of PbS NCs, when the growth time is increased from 10 to 20 min. Both changes are accompanied by broadening of PbS size distributions, which is consistent with previous studies of isolated PbS NCs showing similar growth kinetics.76,77 The lattice structure of PbS domains was further investigated using X-ray powder diffraction (XRD). Figure 4 shows several examples of XRD spectra corresponding to PbS/TiO_2 nanocomposites grown using different synthetic conditions and comprising small-diameter (d = 3.0 nm, trace a) and large-diameter (d = 4.7 nm, trace c) PbS NCs. In the case of 3.0-nm PbS NCs, the measured XRD pattern was found to be similar to the diffraction pattern of PbS/TiO_2 films grown via a 9-cycle CBD method, as judged from the comparison of widths and relative intensities of (200) and (220) PbS Bragg lines.
the average nanoparticle size and the overall crystal quality. On the other hand, the PbS Bragg lines corresponding to 4.7-nm PbS/TiO$_2$ films (grown at 180°C, Figure 3b) are narrower and stronger in intensity than those of CBD-grown PbS NCs. Relatively smaller widths of Bragg peaks in trace b indicates that the hot-injection method can enable the growth of PbS NCs with diameters larger than multicycle CBD approach, for which the average size ranges from 2.5 to 3.5 nm.20 Furthermore, since the ratio of Pb to Ti elements in 3.0-nm PbS/TiO$_2$ films is the same as in 4.7-nm PbS/TiO$_2$, as judged by EDX measurements, the stronger intensity of 200 and 220 PbS Bragg lines observed for 4.7-nm PbS NCs cannot be solely attributed to the increased volume of PbS material in these films, and is believed to result from the improved crystallinity of PbS domains. It is also interesting to note that PbS/TiO$_2$ films grown at elevated temperatures ($T = 280$ °C) show markedly increased PbS XRD intensities (Figure 3a) as compared to nanocomposites grown at 180 °C (Figure 3b). Since the average size of PbS domains grown at 280 °C is approximately the same as that of NCs grown at 180 °C (see Figure 3), the relative increase of XRD intensities in nanocomposites fabricated at 280 °C was attributed to a greater density of PbS NCs on TiO$_2$. This hypothesis is also confirmed by EDX measurements showing an increased ratio of Pb to Ti elements in PbS/TiO$_2$ materials grown at 280 °C.

To demonstrate the extendibility of the substrate-bound NC growth to other material system, fabricated PbS/TiO$_2$ heterostructures were transformed into CdS/TiO$_2$ and subsequently a Cu$_2$S/TiO$_2$ system using Pb$^{2+}$→Cd$^{2+}$→2Cu$^{+}$ cation exchange. Remarkably, the overall nanoparticle shape does not change during such transformation, making this technique ideal for template-based synthesis of many semiconductor NCs.79 We found that the direct exchange of cations in PbS using aqueous solutions of Cu, Zn, and Sn ion salts was not very effective leading to only a miniscule fraction of ions being replaced; however, if Pb cations were first exchanged with Cd via hot-temperature protocols,80,81 the subsequent Cd$^{2+}$→2Cu$^{+}$ cation replacement could be performed.

Figure 5 shows a few representative TEM images of heterostructured films fabricated from PbS/TiO$_2$ substrates via cation exchange. The materials were characterized using EDX and XRD to confirm the formation of new crystalline phases, while the shapes of resulting NCs domains were analyzed using HR-TEM images. The size-dispersion of both Cu$_2$S and CdS NCs was approximately similar to that of starting PbS NCs, as was expected due to the preservation of NC shapes during cation exchange. The biggest challenge faced at this stage was controlling the stoichiometry of resulting NCs/oxide interfaces, as Pb$^{2+}$ cations located at the core of large-diameter NCs (>5 nm) were difficult to replace.

It is expected that optoelectronic properties of PbS/TiO$_2$ heterostructures are strongly dependent on the average size of PbS domains. According to the excited-state energy diagram82,83 in Figure 6a, photoinduced electron transfer across PbS/TiO$_2$ interface is energetically allowed only when the diameter of PbS NCs is less than 7 nm. (b) Absorption spectra of PbS/TiO$_2$ films comprising 3.1 and 4.2 nm PbS NCs. The absorption spectrum of annealed TiO$_2$ films (P-25, Degussa) on ITO was used as a baseline.

Figure 6. (a) Energy diagram showing a relative alignment of the conduction and valence band edges in PbS/TiO$_2$ heterostructures. According to the expected relationship between the energy of 1Se (PbS) state and the nanocrystal size, the photoinduced electron transfer from PbS to TiO$_2$ domain is allowed only if the diameter of PbS NCs is less than 7 nm.
than ∼7 nm. In this case, the staggered alignment of conduction and valence band edges at the PbS/TiO₂ interface creates positive exothermicity that drives the electron transfer reaction. Conversely, for PbS nanoparticles with diameters greater than 7 nm, the PbS/TiO₂ heterostructure exhibits type I alignment of band edges, in which case both excited carriers remain within the PbS material.

Different regimes of the band edge alignment in the PbS/TiO₂ system are reflected in optical properties of these films (Figure 6b). For instance, the absorption profile of PbS/TiO₂ nanocomposites, comprising 3.1-nm (a) and 4.2-nm (b) diameter PbS NCs is characteristic of type II heterostructures with nonzero photon absorption in the spectral range below the band gap of both PbS and TiO₂ materials. In addition to the scattering of light on TiO₂ grains, which contributes an inhomogeneous offset of the absorption curve (Figure 6b, red curve), the observed infrared component contains a low-energy tail, which is attributed to excitations of intermediate states that exist at the junction of PbS and TiO₂ domains.⁶⁸ These transitions are commonly observed in heterostructured nanocrystals exhibiting type II carrier confinement and could be beneficial to both photovoltaic and photocatalytic applications of PbS/TiO₂ nanocomposites, as they red-shift the absorption range of PbS/TiO₂ films by several hundreds of nanometers, compared to isolated PbS NCs. Notably, despite a relatively small dispersion of PbS sizes (<11%), the 1S(e)–1S(h) excitonic peak could not be distinguished in the absorption spectra of PbS/TiO₂ films. The observed suppression of excitonic features in heteroepitaxial semiconductor NCs has been observed previously for ZnSe@CdS,⁶⁶ CdTe/CdSe,⁵¹,⁸⁴ and PbSe/TiO₂ systems and is believed to arise due to the delocalization of excited carriers across the two domains.

To estimate the potential of fabricated nanocomposite substrates for energy conversion via charge separation process, PbS/TiO₂ films were incorporated as a working electrode into a prototype solar cell, comprising a solid hole-transporting layer. The latter was fabricated by spincoating a thin layer of isolated PbS NCs, interlinked with short 3-mercaptopropionic acid (MPA) ligands on top of a PbS/TiO₂ film using a methodology reported in ref 85. The effectiveness of such MPA-PbS arrays as a hole conducting medium has been recently demonstrated through a depleted heterojunction (DH) solar cell architecture, where impressive values of PCE, ranging from 3 to 5.1% have been reported.⁸⁵,⁸⁶ On the basis of the length of MPA molecules, we anticipate that the hole mobility, μh, of MPA–PbS films is comparable to that of commonly used 1,2-ethanedithiol (EDT)-interlinked PbS films,⁸⁷ for which μh = 0.028 cm² V⁻¹ s⁻¹ were reported.⁸⁸ In the present work, we employ a 140–200 nm film of monodisperse, MPA-capped PbS NCs for the regeneration of photoinduced holes in PbS/TiO₂ nanocomposite films, which gives rise to an all-inorganic NC-sensitized solar cell (AI-NCSSC) design. It should be stressed that despite relying on the same hole-conducting layer, the present AI-NCSSC scheme is yet conceptually different from the DH architecture. Indeed, upon illumination of AI-NCSSC cells from the TiO₂ side of the device, most of the light (>90% @ λ = 750 nm, >99% @ λ = 600 nm, Figure 6b) becomes absorbed by the epitaxially grown PbS domains, leaving only a fraction of the visible incident flux (<1%, for λ < 600 nm) to penetrate into the hole-conducting array of isolated PbS NCs. This percentage is greater for the infrared portion of the solar radiation since the band gap of matrix PbS NCs is smaller than that of TiO₂-bound nanoparticles. The absorbance spectrum in Figure 6b also indicates that the PbS NC array in a AI-NCSSC configuration functions primarily as a hole conductor and not the light absorber component (since the light is mostly absorbed by the sensitizer), which allows a reduction of the thickness of the PbS array layer relative to that of a DH cell architecture. A thinner NC matrix should result in a decreased probability of hole trapping at unpassivated surfaces of PbS NCs, potentially enhancing the short circuit current of the device.

The schematics of fabricated AI-NCSSC solar cells utilizing PbS/TiO₂ nanocomposites are shown in Figure 7a. Prior to the deposition of the TiO₂ paste, ITO slides were treated with TiCl₄ to form a dense oxide film that served as a hole-blocking layer. The hole-conducting layer was made of monodisperse 4.4-nm PbS NCs.
 fabricated according to ref 85 and was deposited on top of PbS/TiO2 films via 5–12 cycles of sequential spin coating and three mercaptopropionic acid (MPA) treatment steps. To complete the cell assembly, 0.03-cm2, Au/Pd contacts were sputtered on top of a PbS hole-conducting layer through a shadow mask.

Figure 8 shows the incident-photon-to-electron conversion efficiency (IPCE) and J–V response of the best-performing AI-NCSSC cell comprising ~3.3-nm PbS sensitizer NCs and fabricated using the above-mentioned procedure (ITO/PbS/TiO2/4.4 nm-PbS/Au/Pd). The measured IPCE curve resembles the absorption profile of PbS/TiO2 films (Figure 6b) in the short-wavelength range (350 nm < λ < 520 nm), reaching the maximum of 29% (λ = 585 nm) and tails off at λ > 1100 nm, where the quantum efficiency drops below 10%. The decrease of the photocurrent at longer wavelengths can be partly attributed to the existence of an activation energy threshold at the PbS/TiO2 interface, which decreases the rate of photoinduced electron transfer for low energy electrons. Using the AM1.5 J–V curve of the best-performing device, we have determined the fill factor (FF) to be 0.33, which corresponds to the PCE value of 1.21%. Remarkably, the measured PCE is comparable or greater than the best reported PCE values of NC-sensitized solar cells (0.8–1.25%)20 fabricated via conventional CBD growth of the PbS sensitizer. On the other hand, it is still lower than the efficiency of depleted-heterojunction devices reported in ref 85. Nevertheless, due to the distinct advantages offered by the demonstrated substrate-bound NC growth and ensuing cell design (thinner hole-conducting layer and all-inorganic, epitaxial heterojunction) we anticipate that the optimized device, emerging as a result of the future work, will show improved characteristics.

The effect of the nanocrystal size on the efficiency of AI-NCSSC solar cells is illustrated in Figure 9. In these experiments, AI-NCSSC cells were prepared using three different PbS/TiO2 working electrode morphologies, comprising 2.8, 3.5, and 4.8 nm PbS NCs, and were subsequently used to measure the corresponding J–V curves. The average size of isolated PbS NCs within a hole-conducting layer was maintained at d = 4.4 nm for all three devices. According to Figure 9, the best efficiency was obtained for films with 3.5 nm PbS NCs, indicating that a relatively weak absorption of these NCs in the red portion of the solar spectrum is partly compensated by the optimally positioned edge of the valence band (Figure 6a), which allows for an efficient injection of photoinduced holes into 4.4 nm PbS NCs of the hole-conducting layer.89 On the other hand, when the size of epitaxial PbS NCs exceeded the diameter of isolated PbS NCs in the matrix (d = 4.8 nm, green curve), the injection of photoinduced holes into the PbS NC array became suppressed, and the efficiency of the cell dropped to 0.11%, despite a significant overlap of NC absorption and solar emission spectral profiles in this case. In principle, it should be possible to achieve greater efficiencies with large-size PbS NCs on TiO2, provided that the hole-conducting layer is made of isolated NCs with even larger diameters. Finally, in the case of 2.8 nm epitaxial PbS NCs, the relatively low efficiency (PCE = 0.17%) is explained due to relatively poor absorption of the NCs across the solar spectrum, and nonoptimal alignment of valence band edges with the hole-conducting layer.

Figure 10a describes the relationship between the efficiency of AI-NCSSC cells and the thickness of the PbS hole-conducting layer. As was mentioned above, AI-NCSSC design employs such layers primarily as a charge-transporting component, which does not contribute significantly into the absorption of light. Therefore, the thickness of the PbS matrix can potentially be reduced relative to that of DH architecture. This hypothesis is supported by measurements summarized...
the competition of the two above-mentioned contributions into the cell resistance results in lower values of FF in fabricated devices. Further research aimed toward the improvement of the hole-conducting layer may be needed to address these limitations. Finally, in regard to the effect of the TiO₂ film morphology on cell performance, we have compared the J–V curves of the two Al-NCSSC cells comprising homemade, transparent TiO₂ paste, and commercial TiO₂ nanoparticle paste from Degussa (Figure 10b). In all of the performed experiments, Degussa TiO₂-based PbS/TiO₂ films yielded consistently better FF and PCE values.

CONCLUSIONS
In summary, we have developed a simple chemical method for coupling colloidal NCs on TiO₂ substrate films via hot-injection routes. The reported technique is enabled by introducing a thin layer of substrate-bound oxide into the reaction flask prior to the injection of organometallic precursors, which leads to the formation of NC/TiO₂ nanocomposites exhibiting a fully inorganic interface between semiconductor and oxide domains. Using a PbS/TiO₂ material combination as a model system, we demonstrate that the reported substrate-bound NC growth technique results in a narrow distribution of NC sizes and good crystalline quality, which compares favorably to NCs fabricated on TiO₂ substrates via traditional SILAR or CBD methods. The extendibility of the present method to other material systems is demonstrated here through the synthesis of lead, cadmium, and copper chalcogenide NCSs on TiO₂ substrates. The light-harvesting performance of fabricated PbS/TiO₂ composites was demonstrated by constructing prototype solar cells, for which the maximum power conversion efficiency of 1.2% was observed.

From the synthetic standpoint, the present method of growing semiconductor NCSs in a substrate-bound form provides a facile strategy for achieving an efficient electronic coupling between colloidal grown NCSs and the substrate material. We anticipate that this approach can be extended to other nanocrystal/substrate material combinations, thus opening new opportunities for the development of heterostructured films from solutions to be used in new-generation photovoltaic, photocatalytic, and light-emitting devices.

METHODS
Materials. 1-Octadecene (ODE, 90% Aldrich), oleylamine (OLAM, 70% Aldrich), oleic acid (OA, 90% Aldrich), titanium tetrachloride (TiCl₄, 99.9% Aldrich), titanium(IV) isopropoxide (99.999%, Aldrich), lead(II) nitrate (Pb(NO₃)₂, 99.999% Aldrich), lead(II) oxide powder (PbO, 99.999% Aldrich), sodium sulfide nonanhydrate (Na₂S.9H₂O, 98% Alfa Aesar), sulfur (S, 99.999% Acros), titanium dioxide (P25, Evonik Degussa), selenium powder (Se, 99.5% Acros), tellurium powder (Te, 99.8% Aldrich), ethanol (anhydrous, 95% Aldrich), methanol (anhydrous, 99.8%
Preparation of TiO$_2$ films on ITO/Glass. ITO glass was cut into 1 cm x 2.5 cm slabs so that it could be inserted into a 1/20-in three-neck flask. The ITO substrate was first cleaned with toluene and subsequently sonicated in a 2% solution of triton in deionized water for 10 min and then in a mixture of isoproply alcohol and deionized water for an additional 10 min and finally dried. TiO$_2$ paste was made by sonicking a mixture of 1.7 g of TiO$_2$ nanomaterials (Degussa, P25) and 7.5 mL ethanol for 40 min. Subsequently, 0.25 mL of titanium tetraisopropoxide was added, and the mixture was sonicated further to form a homogeneous paste. Transparent TiO$_2$ paste was prepared according to the procedure in ref 90. A TiO$_2$ paste was doctor-bladed onto ITO-coated glass surface and sintered at 450 °C for 30 min to allow good electronic conduction. For the growth of PbS NCs onto the film, two TiO$_2$/ITO glass slides were attached facing each other (1 mm spacer was used), which allowed reactants to flow across film surfaces, while preventing any scratching of the film due to stirring.

Deposition of the Hole-Conducting Layer and Au/Pd Counter Electrodes. Before the deposition of the hole-conducting layer, a PbS/TiO$_2$ nanocomposite film was treated with 5 drops of 3-MPA twice, followed by washing with 10 drops of methanol and octane each. The hole-conducting matrix of PbS NCs was deposited layer by layer via sequential cycles of spin coating of PbS NCs and 3-MPA at 1500 rpm, according to ref 85. Briefly, 4 drops of 37 mg/mL PbS NCs in octane, 5 drops of 1/4-MPA and 190 mL of ODE were degassed for 2 h at 120 °C and allowed to cool down to room temperature, then 0.18 g of TMS was added carefully into the flask containing ODE and the resulting TMS/ODE mixture was injected into the Pb precursor solution at 120 °C, while stirring. The color of the mixture immediately turned black. After 1–2 min, the reaction was quenched by removing the flask from the heating mantle and placing it in ice-cold water. One minute of the growth time generally yielded PbS NCs with 4.0–4.4 nm diameter. The NC mixture was cleaned by precipitating the reaction product with 60 mL of acetone and redissolving the precipitate in toluene. The mixture was precipitated again using 20 mL of acetone and finally redissolved in 2 mL of octane to make a stock solution. The required concentration of PbS NCs was obtained by diluting the stock solution with octane.

Synthesis of Isolated PbS NCs for a Hole-Conducting Layer. PbS NCs were fabricated according to a procedure adapted from ref 76. In a typical synthesis, a mixture of 0.45 g PbO, 14.04 g ODE, and 1.34 g OA was degassed in a three-neck flask at 120 °C for 5 h and switched to argon. In the other flask, 5.3 mL of ODE was degassed for 2 h at 120 °C and allowed to cool down to room temperature, then 0.18 g of TMS was added carefully into the flask containing ODE and the resulting TMS/ODE mixture was injected into the Pb precursor solution at 120 °C, while stirring. The color of the mixture immediately turned black. After 1–2 min, the reaction was quenched by removing the flask from the heating mantle and placing it in ice-cold water. One minute of the growth time generally yielded PbS NCs with 4.0–4.4 nm diameter. The NC mixture was cleaned by precipitating the reaction product with 60 mL of acetone and redissolving the precipitate in toluene. The mixture was precipitated again using 20 mL of acetone and finally redissolved in 2 mL of octane to make a stock solution. The required concentration of PbS NCs was obtained by diluting the stock solution with octane.

References and Notes

12. Leschkies, K. S.; Beatty, T. J.; Kang, M. S.; Norris, D. J.; Aydil, E. S.; Yang, L. S. Single-Crystal InGaAs and InP-Based Junctions between Colloidal PbSe Nanocrystals and Thin ZnO Films. ACS Nano 2009, 3, 3638–3648.

Oxide as Active Semiconductor Material.

2. Talapin, D. V.; Murray, C. B. PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors.
Science 2005, 310, 86–89.

3. Lee, J. S.; Shevchenko, E. V.; Talapin, D. V. Au–PbS Core–
Shell Nanocrystals: Plasmonic Absorption Enhancement and Electrical Doping via Intraparticle Charge Transfer.

5. Yochelis, S.; Hodes, G. Nanocrystalline CdSe Formation by
Direct Reaction between Cd Ions and Selenosulfate Solu-
Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell)
2745.

6. Danek, M.; Jensen, K. F.; Murray, C. B.; Bawendi, M. G.
Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated

7. Ivanov, S. A.; Piryatinski, A.; Nanda, J.; Tretiak, S.; Zavadil,
K. R.; Wallace, W. O.; Werder, D.; Klövø, V. I. Type-II Core/
Shell CdS/ZnSe Nanocrystals: Synthesis, Electronic Struc-

8. Pandey, A.; Guyot-Sionnest, P. Intraband Spectroscopy and
Band Offsets of Colloidal II–VI Core/Shell Structures.

Zamkov, M. Synthesis and Characterization of Type II
ZnSe/CdS Core/Shell Nanocrystals. J. Phys. Chem. C 2008,
112, 9301–9307.

10. Reiss, P.; Protienne, M.; Li, L. Core/Shell Semiconductor

Schmall, N.; El-Khoury, P. Z.; Tarnovsky, A. N.; Zamkov, M.
Radiative Recombination of Spatially Extended Excitons in

12. Hewa-Kasakarage, N. N.; Gurusinhe, P. G.; Zamkov, M.
Blue-Shifted Emission in CdTe/ZnSe Heterostructured

13. Shieh, F.; Saunders, A. E.; Korgel, B. A. General Shape
Control of Colloidal CdS, CdSe, CdTe Quantum Rods and
119, 8538–8542.

Schmall, N.; Zamkov, M. Synthesis of ZnSe/CdS Nanobarels
2009, 21, 4305–4309.

15. Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S.
Dumbbell-like Bifunctional Au–Fe3O4 Nanoparticles. Nano

Zamkov, M. Tuning the Morphology of Au/CdS Nanocomposites
through Temperature-Controlled Reduction of

17. Acharya, K. P.; Alabi, T. R.; Schmall, N.; Hewa-Kasakarage,
N. N.; Kirsanova, M.; Nemchinov, A.; Khon, E.; Zamkov, M.
Linker-free Modification of TiO2 Nanorods with PbSe

18. Acharya, K. P.; Hewa-Kasakarage, N. N.; Alabi, T. R.; Nemitz,
I.; Khon, E.; Ullrich, B.; Anzenbacher, P.; Zamkov, M. Synth-
sis of Pb/SiO2 Core/Shell Heterostructures for Photovol-
12504.

19. Hines, M. A.; Scholes, G. D. Colloidal PbS Nanocrystals with
Size-Tunable Near-Infrared Emission: Observation of Post-
synthesis Self-Narrowing of the Particle Size Distribution.

Infrared-Emitting Colloidal Nanocrystals: Synthesis, As-
sembly, Spectroscopy, and Applications. Small 2007,
3, 536–557.

21. Patterson, A. L. The Scherrer Formula for X-ray Particle Size

22. Jain, P. K.; Amirav, L.; Aloni, S.; Alivisatos, A. P. Nanoheter-
structure Cation Exchange: Anionic Framework Conserva-

23. Pietryga, J. M.; Werder, D. J.; Williams, D. J.; Casson, J. L.;
Schaller, R. D.; Klövø, V. I.; Hollingsworth, J. A. Utilizing the
Lability of Lead Selenide to Procreate Heterostructured
Nanocrystals with Bright, Stable Infrared Emission. J.

24. Neo, M. S.; Venkatram, N.; Li, G. S.; Chin, W. S.; Ji, W.
Synthesis of PbS/CdS Core–Shell QDs and their Nonlinear
18044.

25. Wehrenberg, B. L.; Guyot-Sionnest, P. Electron and Hole
2003, 125, 7806–7807.