1-2013

Single-cell Imaging And Spectroscopic Analyses Of Cr(vi) Reduction On The Surface Of Bacterial Cells

Yuanmin Wang
Papatya C. Sevinc
Sara M. Belchik
Jim Fredrickson
Liang Shi

See next page for additional authors

Follow this and additional works at: https://scholarworks.bgsu.edu/chem_pub

Part of the Chemistry Commons

Repository Citation
Wang, Yuanmin; Sevinc, Papatya C.; Belchik, Sara M.; Fredrickson, Jim; Shi, Liang; and Lu, H. Peter, "Single-cell Imaging And Spectroscopic Analyses Of Cr(vi) Reduction On The Surface Of Bacterial Cells" (2013). Chemistry Faculty Publications. 84. https://scholarworks.bgsu.edu/chem_pub/84

This Article is brought to you for free and open access by the Chemistry at ScholarWorks@BGSU. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of ScholarWorks@BGSU.
Single-Cell Imaging and Spectroscopic Analyses of Cr(VI) Reduction on the Surface of Bacterial Cells

Yuanmin Wang,† Papatya C. Sevinc,† Sara M. Belchik,‡ Jim Fredrickson,‡ Liang Shi,‡ and H. Peter Lu*,†

†Department of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
‡Microbiology Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States

Supporting Information

ABSTRACT: We investigate the single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic, highly soluble Cr(VI) can be efficiently reduced to less toxic, nonsoluble Cr₂O₃ nanoparticles by MR-1. Cr₂O₃ is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr₂O₃ and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1 surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of MR-1 is wild type > single mutant ΔmtrC or mutant ΔomcA > double mutant (ΔomcA−ΔmtrC). Moreover, our results also suggest that direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may coexist in the reduction processes.

INTRODUCTION

Hexavalent chromium [Cr(VI)] contamination of the soil and groundwater is a significant environmental hazard that has attracted considerable attention in the scientific community.¹,² For a human being, Cr(VI) toxicity can lead to many health impacts such as carcinogenesis and mutagenesis.³ Because of its high aqueous solubility and mobility, Cr(VI) contamination can be proliferated to spread to a vast area through groundwater. Therefore, reducing highly soluble, toxic Cr(VI) to less-soluble, less-toxic Cr(III) in the form of Cr₂O₃ precipitates is the primary strategy for contamination treatment.

In a natural environment, direct microbial reduction and chemical reaction using Fe²⁺ or S²⁻ as a reductant are two typical approaches to decrease the Cr(VI) contamination. Microbial reduction has been widely utilized in bioremediation approaches to the environmental cleanup of Cr(VI) contamination in the soil because it is a feasible and promising strategy considering that bacteria naturally exist and pervade a wide area even underground and under anaerobic conditions. In recent years, many bacteria have been demonstrated to have the capability to reduce Cr(VI) to Cr(III).⁴−⁹ As a dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1 (MR-1) has also been reported to be capable of reducing Cr(VI), and the reduced product has been shown to occur as nanoparticles on the bacterial cell surface or in the cytoplasm, including our recent report on the reduction activities of outer membrane proteins on reducing Cr(VI).⁶,¹⁰−¹⁴

Raman spectroscopy is a unique technique, giving fingerprint information about the molecules (such as proteins and organics) to identify various molecules and probe specific vibrational modes that are sensitive to the redox states of the molecules.¹⁵,¹⁶ Recently, we have applied high-resolution AFM-Raman spectroscopy to probe the chemical nature of the cell surface nanodomains (i.e., the surface features on the nanometer scale) of MR-1.¹⁷ It is demonstrated that the distribution density of the nanodomains shows clear differences under aerobic and anaerobic conditions and that the major component of the cell surface domains is identified to be the redox heme proteins. This finding may help to reveal the mechanism of the Cr(VI) reduction by MR-1. Moreover, surface heme proteins OmcA and MtrC (also known as OmcB) of MR-1 have been proven to play a key role in the reduction of Fe(III), Mn(III/IV), and Cr(VI).¹⁰,¹¹,¹⁸−²² In this report, we apply combined surface-enhanced Raman spectroscopy, SEM, and EDX imaging to probe the Cr(VI) reduction mechanism at the single-cell level. Our spectroscopic and imaging evidence

Received: July 14, 2012
Revised: December 11, 2012
Published: December 18, 2012
indicates the following: the chemical nature of the reduced nanoparticles is \(\text{Cr}_2\text{O}_3 \); co-localization of reduced \(\text{Cr}_2\text{O}_3 \), MtrC, and OmcA signifies that surface proteins OmcA and MtrC are the key components in the \(\text{Cr(VI)} \) reduction reaction; the cooperation of OmcA and MtrC makes the reduction reaction most efficient; and both direct \(\text{Cr(VI)} \) reduction by MtrC and OmcA and Fe(II)-mediated \(\text{Cr(VI)} \) reduction mechanisms in which Fe(II) is generated by MtrC and OmcA through Fe(III) reduction are suggested to coexist in the \(\text{Cr(VI)} \) reduction process.

EXPERIMENTAL SECTION

Materials and Sample Preparation. *S. oneidensis* MR-1 and its cytochrome-deleted mutants \(\Delta\text{mtrC} \), \(\Delta\text{omcA} \), and \(\Delta\text{mtrC}−\Delta\text{omcA} \), are described in the previous study.\(^1\) Wild-type *S. oneidensis* MR-1 and the various mutants used were routinely cultured at 30 °C in dextrose-free trypic soy broth (TSB, Dičo, Lawrence, KS). The \(\text{Cr(VI)} \) experiments were carried out by using a resting-cell assay. TSB cultures (50 mL) were grown aerobically for 16 h at 30 °C and 100 rpm and harvested by centrifugation at 5000 g for 5 min. Under these conditions, no growth defect was observed for the mutants used. Cells were washed once in an equal volume of 30 mM sodium bicarbonate buffer (pH 8) at 4 °C. Following centrifugation, the cells were resuspended in the bicarbonate buffer at a density of \(2 \times 10^8 \) cells/mL and purged for 10 min with mixed \(\text{CO}_2/\text{N}_2 \) (80:20) gas. \(\text{Cr(VI)} \) reduction assays contained 30 mM sodium bicarbonate, pH 8, 0.2 mM \(\text{K}_2\text{CrO}_4 \) (Sigma, St. Louis, MO) and 10 mM sodium lactate that was purged with the mixed \(\text{CO}_2/\text{N}_2 \) gas and sealed with thick butyl rubber stoppers. Kinetic studies were initiated by adding the purged bacterial cells at a final density of \(2 \times 10^9 \) cells/mL. The same amount of heat-killed wild-type cells was added as a negative control. The reactions were carried out at 30 °C with horizontal incubation at 25 rpm. At predetermined time points, cells were harvested. After harvesting by centrifugation, bacterial cells were fixed in 2.5% glutaraldehyde.

For hematite reduction, the cells were prepared in the same way as described above. Hematite (11 ± 2 nm; sample received from Prof. Michael F. Hochella, Center for NanoBioEarth, Department of Geosciences, Virginia Tech) was added to a final concentration of 0.1 mM.\(^2\) The reduction of hematite was carried out at 30 °C with horizontal incubation at 25 rpm. At predetermined time points, cells were harvested. After harvesting by centrifugation, bacterial cells were fixed in 2.5% glutaraldehyde.

For hematite reduction, the cells were prepared in the same way as described above. Hematite (11 ± 2 nm; sample received from Prof. Michael F. Hochella, Center for NanoBioEarth, Department of Geosciences, Virginia Tech) was added to a final concentration of 0.1 mM.\(^2\) The reduction of hematite was carried out at 30 °C with horizontal incubation at 25 rpm. At predetermined time points, cells were harvested. After harvesting by centrifugation, bacterial cells were fixed in 2.5% glutaraldehyde.

Surface-Enhanced Raman Spectroscopy Measurements. SERS spectroscopy and imaging were conducted by using an Axiostar 135 inverted scanning confocal microscope equipped with a 100×, 1.3 NA oil-immersion objective (Zeiss FLUAR). A continuous-wave (CW) laser (532 nm, CrystaLaser) was used to pump the sample at 3 \(\mu \)W for SERS and 60 \(\mu \)W for resonance Raman measurements. A ZS320rc beam splitter (Chroma) was used to reflect the excitation light into the microscope objective. Before the scattered light is focused into a monochromator (Triax 550, Jobin Yvon), an HQ545 long-pass filter or an HQ545 long-pass filter was positioned after the entrance slit to reject the Rayleigh light further. The Raman spectra were collected with an LN CCD (Princeton Instruments) cooled to about −100 °C with a resolution of 2 cm\(^{-1}\). The setup was carefully calibrated using a mercury lamp and cyclohexane (mode at 801.3 cm\(^{-1}\)) before the Raman measurements were made. For the SERS experiments, we used Ag nanoparticles as the substrate, and the average size of the nanoparticles was about 50 nm (more details in Supporting Information).

SEM and EDX Imaging Measurements. About 3 \(\mu \)L of the glutaraldehyde-fixed cells was dropped onto a clean coverslip to make a thin film. The film was washed carefully with ultrapure water from Millipore. Once the sample dried, an electrically conductive thin carbon layer of nanometer thickness was used to coat the sample surface for an SEM imaging measurement. The SEM image was collected by using an FEI-Inspect F scanning electron microscope (FEI, Hillsboro, OR) with a spatial resolution of ~1 nm. Secondary electrons were probed to obtain the SEM image at a typical acceleration voltage of 20 kV. An EDX system (INCA Penta FET X 3, Oxford Instruments, Abingdon, U.K.) was attached to the microscope to obtain the elements’ (Cr and Fe) image.

RESULTS AND DISCUSSION

As outer membrane cytochromes (heme proteins), OmcA and MtrC have been suggested to be the major components showing the capability of extracellular respiration on the MR-1 surface.\(^3,4\) We have further proven this attribution by our spectroscopic evidence (Figure 1) using resonance Raman (RR) spectroscopy and surface-enhanced Raman spectroscopy (SERS). Figure 1A−C shows the RR spectra of hemin chloride (an analogue of the heme group in c-type cytochrome), purified OmcA, and MtrC. The typical and signature vibrational modes of the heme group, such as \(\nu_4 \), \(\nu_5 \), \(\nu_7 \), and \(\nu_{10} \), are clearly shown, and the spectral profiles are essentially the same among the examined samples, indicating that OmcA and MtrC are intrinsically heme proteins. Moreover, as the oxidation state marker, the mode \(\nu_4 \) peak appears at 1373 cm\(^{-1}\), implying that all three samples are in their oxidized states because of having a vibrational frequency in the range of ~1368−1377 cm\(^{-1}\), which pertains to the ferric (Fe\(^{III}\)) state.\(^5\)

We have also applied SERS to investigate the chemical nature of the surface proteins of MR-1. As shown in Figure 1D, the Raman spectral profile of the wild-type cell surface matches the RR spectra of OmcA and MtrC, implying that the major components of the cell surface are dominated by c-type cytochrome. These spectroscopic identifications are consistent but beyond our previous measurements.\(^1,18\) In addition, we note that the \(\nu_4 \) mode in Figure 1D peaks at 1366 cm\(^{-1}\) unlike the RR of hemin, OmcA, and MtrC at 1373 cm\(^{-1}\). The observed 7 cm\(^{-1}\) shift of the oxidation state marker is most likely due to the partial charge transfer between the cell surface...
heme proteins and the Ag substrate used for the SERS measurements.25

To check the reduction capability of the MR-1 cell surface, we performed a biological assay under anaerobic conditions by using Cr(VI) in solution. To prove the key roles of the surface proteins, OmcA and MtrC, in the reduction reaction, we have carried out four experiments under the same measurement conditions and assay protocol10 on different MR-1 cells: (a) wild type, (b) ΔmtrC mutant, (c) ΔomcA mutant, and (d) ΔmtrC−ΔomcA double mutant. We applied SEM, EDX, and SERS to analyze the cell surfaces after Cr(VI) reduction. We have observed rough cell surfaces showing nanoparticles in the case of wild type, the ΔmtrC mutant, and the ΔomcA mutant but not for the double mutant ΔmtrC−ΔomcA. Because oxygen can be ruled out as an electron acceptor under anaerobic conditions, electron transfer from the cell surface to Cr(VI) is the only possible charge-transfer pathway. Therefore, the nanoparticles shown on the bacterial MR-1 cell surfaces are attributed to the reduced insoluble Cr(III) species (i.e., Cr2O3).

As a typical case, we show the experimental data of the wild type MR-1 cells in Figure 2. From the SEM image (Figure 2A), we have observed rough cell surfaces showing nanoparticles in the case of wild type, (b) ΔmtrC mutant, (c) ΔomcA mutant, and (d) ΔmtrC−ΔomcA double mutant. We applied SEM, EDX, and SERS to analyze the cell surfaces after Cr(VI) reduction. We have observed rough cell surfaces showing nanoparticles in the case of wild type, the ΔmtrC mutant, and the ΔomcA mutant but not for the double mutant ΔmtrC−ΔomcA. Because oxygen can be ruled out as an electron acceptor under anaerobic conditions, electron transfer from the cell surface to Cr(VI) is the only possible charge-transfer pathway. Therefore, the nanoparticles shown on the bacterial MR-1 cell surfaces are attributed to the reduced insoluble Cr(III) species (i.e., Cr2O3). As a typical case, we show the experimental data of the wild type MR-1 cells in Figure 2. From the SEM image (Figure 2A),

Figure 2. (A) Typical SEM image of MR-1 after the Cr(VI) reduction assay. (The scale bar for the SEM image is 500 nm.) Nanoparticles emerged on the cell surface after the reduction. An additional SEM image is shown in the Supporting Information to clearly show the nanoparticles on the cell surface. (B) Nanoparticles are suggested to be Cr by EDX characterization. (C) The chemical composition of the nanoparticles is identified to be the reduced product, Cr(III) (i.e., insoluble Cr2O3) by SERS depending on the occurring prominent peak at 551 cm−1, the A1g vibrational mode of the Cr(III)−O bond, and the typical peaks originating from the cell-surface proteins).

nanoparticles can be clearly observed. Figure 2B shows the EDX image of the two adjacent wild type cells in that only one of them is covered with a significant number of nanoparticles. Accordingly, a highly concentrated Cr element is observed on this cell surface. To probe the chemical nature of the formed nanoparticles further, we performed SERS measurements, and the results for wild type MR-1 are shown in Figure 2C. Obviously, besides the typical Raman vibrational modes (typical peaks from 1100 to 1650 cm−1) originating from outer-membrane c-type cytochromes of MR-1, there is also an additional peak at 551 cm−1, the A1g vibrational mode of the Cr(III)−O bond that originated from Cr2O3. Other possible compounds, such as CrOOH and Cr(OH)3, have different Raman shifts for their Cr(III)−O mode.26,27 The co-localization of cytochromes and Cr(III) suggests that MtrC and OmcA reduce Cr(VI) directly, which is consistent with the terminal reductase roles of these cytochromes in Cr(VI) reduction.10 On the basis of our control experiments, outer-membrane proteins OmcA and MtrC are demonstrated to be the dominant terminal reductases of the Cr(VI) reduction reaction. Combined with the statistical analysis of the density of the nanoparticles on all four samples as well as our recent discoveries,10 we suggest that the reactivity of the reduction reaction changes in the order wild type > ΔmtrC mutant or ΔomcA mutant > ΔomcA−ΔmtrC double mutant. Our conclusion is consistent with the previous results.10

A fundamental understanding of the reduction mechanism of Cr(VI) is critical to the promotion of the bioremediation efficiency. Moreover, a clear and in-depth mechanism can also be used as a reference to study the bioremediation processes of other metal contaminants. Previously, the bioremediation mechanism of Cr(VI) has been suggested to be a direct microbial reduction2,14 or an Fe(II)-mediated reduction9,28,29 for the Shewanella species. Here, we demonstrate that these two mechanisms can coexist in the Cr(VI) reduction by MR-1.

Shewanella species have been observed to be capable of reductively transforming Fe(III) containing minerals such as ferricyanide, goethite, and hematite (Fe2O3) in a natural, oxygen-limited environment.30 Previously, electron exchange between the MR-1 and hematite nanoparticles has been suggested to occur by both direct and indirect mechanisms with the reduction rates altering according to the nanoparticle size, shape, and aggregation state.31 Moreover, direct electron exchange between the surface proteins (OmcA and MtrC) of MR-1 and hematite associated Fe(II) electrodes has been demonstrated by using an electrochemical approach.32 Because hematite is abundant on the earth, if it can mediate the reduction process between Shewanella and Cr(VI) it will aid natural Cr(VI) bioremediation. Therefore, our analytical assay for probing the Cr(VI) reduction mechanism was also performed with additional hematite. Figure 3 shows the imaging and spectroscopic characterizations of the hematite-involved Cr(VI) reduction process by MR-1 cells. The SEM images (Figure 3A) show that a significant number of the nanoparticles appeared on the cell surfaces of wild type, the ΔomcA mutant, and the ΔmtrC mutant but not for ΔomcA−ΔmtrC. The additional 551 cm−1 Raman peak (Figure 3B), a signature vibrational signal of Cr2O3, unambiguously identifies that the chemical nature of the nanoparticles is Cr2O3, the reduced product of Cr(VI). In addition, we have also applied EDX to analyze the distributions of elements Cr and Fe on the cell surface. However, for wild type, the ΔomcA mutant, and the ΔmtrC mutant, we observed Cr but no Fe. Figure 3C shows typical imaging data of wild-type MR-1 after the reduction assay. Under the same background noise level, Cr is clearly observed. For the double mutant ΔomcA−ΔmtrC, most of the time we observe only smooth cell surfaces, and there is no concentrated Cr or Fe as shown in Figure 3D. On the basis of these observations, we suggest that most of the Cr2O3 nanoparticles on the cell surfaces originate from a direct microbial reduction. Our single-cell bioremediation result is consistent with the reported ensemble measurements of a direct microbial reduction mechanism.12,14
For the hematite-involved samples, in addition to the observed nanoparticles on cell surfaces, we also observed large aggregations around the cell surfaces. The SEM images are shown in Figure 4. Using EDX characterization, we found concentrated Cr co-localized with Fe in the aggregations for the samples: wild type, mutant ΔomcA, and mutant ΔmtrC. In contrast, for double mutant ΔomcA−ΔmtrC, only small concentrations of Cr were observed. Figure 4A,B shows the typical SEM and EDX images for wild type and mutant ΔomcA−ΔmtrC samples. For a quantitative comparison, we measured the amount of Cr and Fe and calculated the Cr/Fe atomic ratios in the aggregations for all four samples with...
multiple (at least five) independent samplings by using EDX imaging. The Cr/Fe atomic ratios are calculated to be 0.78:1, 0.23:1, 0.32:1, and 0.2:1 for the wild type, single mutant ΔmtrC, ΔomcA, and double mutant ΔomcA-ΔmtrC samples, respectively (Figure 5). The heterogeneous distributions (especially the high concentration for the wild type) of the Cr/Fe atomic ratios imply that the insoluble Cr species (most likely Cr2O3) in the hematite aggregations does not originate simply from physical adsorption after direct microbial reduction. In a direct reduction, the ratios should be close to homogeneity after multiple times of independent sampling. Considering that Fe(II) can mediate the electron transfer between MR-1 and Cr(VI), we suggest that hematite could act as an electron shuttle in our reduction assay experiments. In the Cr(VI) reduction process, in addition to the direct microbial reduction (Figure 6A), MR-1 may first reduce hematite and then the reduced hematite goes on to transfer an electron to the soluble Cr(VI) (Figure 6B). This observation suggests that the direct microbial Cr(VI) reduction and Fe(II)-mediated Cr(VI) reduction mechanisms may coexist in the bioremediation processes. This proposal is also consistent with the previous reports that suggest that several mechanisms may exist in the bacterial metal-reduction process depending on different local environments and conditions.

To reveal the mechanism of the MR-1-involved bioremediation process, several aspects, including the reduction of the protein species, their localization and identification, and the energetics and kinetics of the reduction reactions, still need further specific characterization. The MR-1 genome encodes 42 c-type cytochromes. However, only three of them (OmcA, MtrC, and MtrA) have been demonstrated to be involved in the metal reduction. Except for cytochromes, iron–sulfur proteins and quinones have also been proven to be capable of reducing heavy metals. We and other groups have demonstrated that the reduction proteins could be localized inside or outside the cell surface or as an external microbial “nanowire” by using Raman spectroscopy and high-resolution topographic imaging techniques. For the energetics and dynamics of the reduction reaction, both theoretical and experimental approaches have been conducted in recent years. Nevertheless, a real-time quantitative description of the metal-reducing process could include several important parameters such as the electron-transfer rate of the direct bacterial reduction reaction, the free-energy landscape of the reduction reaction, and the working principles of the electron shuttle in an indirect mechanism.

CONCLUSIONS

We have applied an approach that combines Raman spectroscopy and SEM imaging analyses to characterize the reduction of Cr(VI) to Cr(III) insoluble nanoparticles by c-type cytochromes, MtrC and OmcA, on the bacterial cell surface. Our results demonstrate that (1) MR-1 is capable of reducing toxic Cr(VI) to less-toxic Cr(III)-containing Cr2O3 nanoparticle precipitates on the cell surfaces; (2) the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient and the sequence of the reducing reactivity of the MR-1 is wild type > single mutant ΔmtrC or ΔomcA > double mutant ΔomcA-ΔmtrC; (3) surface proteins OmcA and MtrC are the terminal reductases of Cr(VI); and (4) direct microbial Cr(VI) reduction and Fe(II)-mediated Cr(VI) reduction mechanisms may coexist in the bioremediation process. These conclusions will advance our understanding of the mechanism and the key parameters in the bioremediation process, such as the localization and identification of the terminal reductases and a mechanical description of the surface chemical reactions. Moreover, these results demonstrate the potential application of SERS in investigating the mechanisms of metal reduction by microbial-surface proteins.

ASSOCIATED CONTENT

Supporting Information

Significance of Raman spectroscopy and methods. SEM image of nanoparticles on the bacterial surface. Control experiments for identification of the heme proteins on the wild-type Shewanella oneidensis MR-1 surface using surface-enhanced Raman spectroscopy. This material is available free of charge via the Internet at http://pubs.acs.org.
ACKNOWLEDGMENTS

Corresponding Author

*E-mail: hplu@bgsu.edu.

The authors declare no competing financial interest.

REFERENCES

This work was supported by NIH NIEHS (SR01ES017070-03).

