Simultaneous Spectroscopic And Topographic Near-field Imaging Of TiO2 Single Surface States And Interfacial Electronic Coupling

Papatya C. Sevinc
Xiao Wang
Yuanmin Wang
Dai Zhang
Alfred J. Meixner

See next page for additional authors

Follow this and additional works at: https://scholarworks.bgsu.edu/chem_pub

Part of the Chemistry Commons

Repository Citation

This Article is brought to you for free and open access by the Chemistry at ScholarWorks@BGSU. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of ScholarWorks@BGSU.
Author(s)
Papatya C. Sevinc, Xiao Wang, Yuanmin Wang, Dai Zhang, Alfred J. Meixner, and H. Peter Lu
Simultaneous Spectroscopic and Topographic Near-Field Imaging of TiO$_2$ Single Surface States and Interfacial Electronic Coupling

Papatya C. Sevinc,5,* Xiao Wang,5,** Yuanmin Wang,† Dai Zhang,† Alfred J. Meixner,*,† and H. Peter Lu*,†

†Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
‡Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany

ABSTRACT: We have probed single surface states and the involved interfacial charge transfer coupling on the TiO$_2$ surface using confocal as well as tip-enhanced near-field topographic—spectroscopic imaging analysis on a niobium-doped rutile TiO$_2$ (110) surface. The confocal images excited with a radially polarized donut mode render ring-shaped excitation patterns typical for quantum systems with two perpendicular transition dipole moments. The tip-enhanced near-field optical images of single surface states are visualized by the strong exciton plasmon—polariton coupling localized at the subdomain boundaries with a spatial resolution of ∼15 nm (far beyond the optical diffraction limit). We suggest that the abundant surface states in the doped TiO$_2$ generate excitons under laser excitation which are strongly coupled to the surface plasmon—polaritons of the Au tip. Moreover, the interfacial electronic molecule—substrate coupling has been characterized by probing the molecule-perturbed surface states distribution and the associated specific Raman vibrational modes. The imaging and characterization of the surface states and their distributions on TiO$_2$ surfaces at nanoscale are critically relevant to a deep understanding of interfacial electron transfer dynamics and energetics involving in solar energy conversion, photocatalysis, and mechanistic understanding of surface-enhanced Raman scattering spectroscopy.

KEYWORDS: Single electronic surface states, nanoscale imaging, near-field topographic—spectroscopic imaging, electronic coupling, interfacial electron transfer

Interfacial electron transfer at molecule/semiconductor interfaces has been widely investigated due to its extensive applications in solar energy conversion, photocatalysis, and molecular electronics.1–3 Because of the unique properties of adequate photostability, nontoxicity, low-cost, and high catalytic reactivity, molecule/TiO$_2$ systems have attracted significant attention. It has been demonstrated that the interfacial electron transfer rate at the molecule/TiO$_2$ interface is strongly regulated by the molecule—semiconductor interactions, such as driving force of the free energy gap, the vibrational relaxation energy of the adsorbed molecules, the surface vibrational modes of TiO$_2$, and the electronic coupling between the molecules and TiO$_2$, etc.1–4 In a dye-sensitized system, the hot excited electron injects, for example, from the lowest unoccupied molecular orbital (LUMO) into the conduction band or energetically accessible surface states of the semiconductors. In particular, surface states inside the band gap usually provide a dominant pathway for the injected electrons through a Levy type non-Brownian motion such as trapping, detrapping, and scattering.5–7 It has been demonstrated that, due to the important role of the surface traps, the electron transport rate in single crystal TiO$_2$ nanowires, polycrystalline TiO$_2$ nanowires, and nanotubes can be as slow as in TiO$_2$ nanoparticle electrodes.8–10 Hence, a fundamental understanding of surfaces states, such as their nanoscale distribution, optical properties, and involved charge transfer coupling, is crucial to the promotion of the photoelectrical performance of the semiconductor devices.

Surface states and their distribution, which describe the two-dimensional carrier profiles and determine the electronic properties of semiconductor surfaces, have been studied by photoemission spectroscopy,11 surface photovoltage spectroscopy,12 scanning capacitance microscopy,13 scanning spreading resistance microscopy,14 scanning tunneling microscopy,15 and Kelvin probe force microscopy.16 In this report, single surface states on the pristine TiO$_2$ surface and molecule—substrate electronic coupling have been probed using a parabolic-mirror-assisted confocal and tip-enhanced near-field microscopy excited by a highly focused radially polarized laser beam. The unique technique can provide in the confocal mode distinct diffraction limited excitation patterns which reflect the dimensionality of the quantum system,17 and when an additional sharp tip is brought in the focus for further confirming the optical field and tip enhanced

Received: November 29, 2010
Revised: February 15, 2011
Published: March 04, 2011
near-field excitation, we can simultaneously get nanoscale topography, optical imaging, and the chemical identification of a specific single surface state with a spatial resolution of ~ 15 nm. Strong exciton plasmon–polariton coupling at the TiO$_2$/Au tip nanogap reveals the high spatially and optically resolved two-dimensional distributions of the TiO$_2$ surface states. The nanoscale imaging and the involved charge transfer coupling of the surface states at the molecule/TiO$_2$ interface have been further investigated by monitoring the density of molecule-perturbed surface states, energy distribution, and the specific Raman vibrational modes.

Niobium doped (0.17%) rutile TiO$_2$ single crystals (Commercial Crystal Laboratories, Inc.) and Alizarin (Sigma-Aldrich) were used as purchased. For a control experiment, TiO$_2$ nanoparticles (size, ~ 13 nm) were prepared using titanium isopropanoxide as precursor according to a literature protocol.18 The parabolic-mirror-assisted optical near-field microscope as described in previous publications was used for recording simultaneously correlated topographic and near-field optical images with ultrahigh spatial resolution.19,20 Briefly, a high-NA parabolic mirror was used to focus a radially polarized He$^-$Ne laser beam ($\lambda = 632.8$ nm) as the excitation source to a diffraction limited focus on the sample surface. The field distribution in the focus has a dominant longitudinal electric field component in the focal center surrounded by a ring with a fraction of electric field in the sample plane that is radially polarized. The scattered or luminescence light from the illuminated sample region was collected into the sample plane that is radially polarized. The scattered or recorded. For super-resolution imaging, a sharp electrochemically etched Au tip with an apex radius of about 10 nm was brought into the focus to within a few nanometers (1–3 nm) to the sample surface (Figure 1A). The Au tip serves as a local probe for recording the sample topography and as an optical antenna for recording correlated near-field optical images of the sample surface. A schematic illustration of a parabolic-mirror-assisted ultramicroscope is shown in Figure 1A together with the diffraction limited luminescence image of a sharp Au nanocone on a silicon surface (Figure 1B, excited by the longitudinal central field component in the focus).

Figure 2. Nanoscale topographic (A) and superimposed near-field-optical (red) and topographic (blue) images (B) of the Nb-doped rutile TiO$_2$ (110) surface. As shown in image (B), strong exciton plasmon–polariton coupling is localized at the spot- or ribbon-like subdomain boundaries, which is evidenced by the anticorrelated topographic (blue) near-field optical (red) line profiles (C).

Figure 1. (A) Schematic illustration of a parabolic-mirror-assisted ultramicroscope. A sharp Au tip is adjusted into the center of a vertically polarized, diffraction limited focus as created by an incident radially polarized laser beam. The tip serves as an optical antenna providing intense local electromagnetic (EM) field enhancement at the tip apex for local excitation and emission to the optical far-field. (B) Laser illumination is applied in a radially polarized mode to obtain the strongest EM enhancement at the tip apex as visualized by the diffraction limited, circular luminescence emission pattern of sharp Au nanocones.

Transparent conducting oxide accessible for both photons and charge carriers has wide applications in photovoltaic, photocatalysis, and molecular electronics. Compared with tin-doped indium oxide (ITO), recently, Nb-doped titanium oxide (NTO) has attracted more attention due to its high transparency in visible light and low cost.$^{21-23}$ Herein, we choose NTO as a model substrate, and the results obtained from this system provide a characteristic identification and analysis of surface states and their involved electronic coupling at a semiconductor surface. The same approaches can be directly applied to other similar systems in research and technology developments.

Panels A and B of Figure 2 show a simultaneously recorded topographic and near-field optical imaging result of a clean Nb-doped rutile TiO$_2$ (110) single crystal surface. The correlated images show that the surface is rough with a number of spots or ribbon-like nanoscale features. A strong optical enhancement is observed at the nanostructure subdomain boundaries (red spots) (Figure 2B). We suggest that the optical enhancement is originated from the surface-state exciton plasmon–polariton coupling of the semiconductor surface with the Au tip. It has been reported that, besides the band gap transition band at about 3.2 eV, there are additional broad low-energy bands (1.5–2.5 eV) in the absorption spectrum of the Nb-doped TiO$_2$. These low-energy bands have been assigned to be the deep trap states within the band gap.24,25 and these trap states are most likely the origin of the surface states that we observed. Under 632.8 nm laser excitation in our imaging experiments, the electron transitions from the valence band (nearly oxygen 2p orbital character) of TiO$_2$ to the energetically accessible deep trap states form the excitons, and the energy-comparable excitons and tip plasmon–polaritons strongly couple at the TiO$_2$/Au tip nanogap. Considering the doped Nb$^{5+}$ donor locates 0.09 eV below the
Figure 3. Optical response of the abundant surface states of the Nb-doped rutile TiO$_2$ (110) surface. (A$_1$) Confocal imaging and (A$_2$) Raman/luminescence spectra of TiO$_2$ (110) surface. (B$_1$) Confocal imaging and (B$_2$) Raman/luminescence spectra of TiO$_2$ (110) surface with alizarin (1 μM). All the Raman spectra shown here are typical ones that were collected from single sites. (C$_1$) Near-field optical imaging and (C$_2$) a zoom-in line profile of TiO$_2$ (110) surface covered with alizarin (1 μM).

conduction band of rutile TiO$_2$,24 the physical nature of most trap states inside the band gap may originate from the bridging oxygen vacancies26 or interstitial Ti atoms.27 Strong exciton plasmon–polariton coupling occurring between the tip apex and the sample surface enhances both the population of surface states and the creation and radiative decay of excitons at the subdomain boundaries, which is reasonable because there are more defects or irregular microscopic structures at these sites as compared to the bulk. This phenomenon is also quantitatively evidenced by the anticorrelated line profiles of the topography height and optical intensity as shown in Figure 2C. On the basis of the line profile, a spatial and optical resolution of ~ 22 nm is typically deduced for the imaging of the surface states of TiO$_2$, which is far beyond the optical diffraction limit. We suggest that the majority of the imaged surface states are single states, although we cannot rule out the existence of the possible clusters of surfaces states due to our spatial resolution and signal-to-noise ratio in the imaging measurements. Our attribution is primarily based on panels A$_1$ and B$_1$ in Figure 3 which show confocal images of the Nb-doped TiO$_2$ (110) surface under the conditions of without (A) and with alizarin (B), respectively. Most of the hot spots in the confocal image (without the tip) in Figure 3A$_1$ show as donut-shape features, and only a small number of them show as circular or ellipsoidal-shaped spots. Such different diffraction limited fluorescence excitation patterns can only be observed when single quantum systems are raster scanned through the field distribution of a tightly focused radially polarized laser beam. Since the excitation rate is proportional to the square of the projection of the transition dipole moment onto the electric field as

$$ R_{\text{exc}} \propto | \vec{E} \cdot \vec{D} |^2 $$

distinct excitation patterns are observed if single quantum systems, such as a single molecules, defects, or surface states, are imaged, revealing their orientation and the dimensionality of their optical transition. We have calculated the optical patterns of quantum systems with one dipole moment, two perpendicular dipole moments (lying in one plane), or three perpendicular dipole moments excited by radially polarized laser beams (see Supporting Information). Only for quantum systems with a two-dimensional transition dipole moment as recently found for excitons in quantum dots17 we can observe circular patterns. Here, the ring patterns suggest that the transition dipole moment of the surface states can assume two perpendicular orientations with the same probability and both lying in the surface plane. This is consistent with recent quantum-chemical calculations which suggest that O-vacancy formation in rutile Ti(110) surface results in two excess electrons occupying 3d orbitals on Ti atoms neighboring the vacancy.28

The observed surface states at the subdomain boundaries are expected to play a crucial role in the charge transport process on the semiconductor surfaces. For a molecule adsorbed on the semiconductor surface, the surface state charge-transfer pathways will be primarily affected by the density and energy distributions of the surface states. To characterize these important parameters, alizarin/TiO$_2$, which is a typical system with strong electronic coupling at the molecule/semiconductor interface,29,30 is selected to investigate the density of molecule perturbed surface states, energy landscape, and the interfacial charge transfer coupling. We note that most of the hot spots in the images (Figure 3B$_1$) are bright coffee-bean-shape spots, and some of them still show as donut-shape features (see Supporting Information, Figure S$_2$). We suggest that this is due to different electronic coupling strength between alizarin and TiO$_2$: Specifically, (i) for the strong coupled alizarin–TiO$_2$ cases, the surface states are dark and do not show up in the image and hence we observe significantly fewer bright spots; (ii) for the weak coupled alizarin–TiO$_2$ cases, the emission patterns of the single surface states are likely perturbed by the alizarin molecule and shown as coffee-bean-like shape with only one transition dipole moment;
alizarin interface can be proved by the appearance of the 646 cm
recorded by 532 nm excitation.

in confocal resonance Raman spectrum from the sample surface
and alizarin,29,30 we suggest that there is an electronic delocaliza-
(iii) for the remaining sites without alizarin, the surface states
show as donut- or coffee-bean-like patterns depending on the tilt
angles of transition dipole moments of the surface states.

Figure 3C1 shows the near-field optical imaging of TiO2 with
alizarin at a resolution of ∼15 nm (Figure 3C2). Apparently, the
density of the surfaces states has significantly decreased (∼60%)
with alizarin adsorbed on the TiO2 surface. We have also
measured the spectra of the doped TiO2 (110) surface under the
conditions without (Figure 3A2) and with alizarin (Figure 3B2).
For both cases, we observed the typical vibrational
modes A1g (612 cm
15 nm. Electron transitions
from the valence band to the abundant surface states form
excitons and then generate the strong exciton plasmon–polariton coupling at TiO2/Au tip nanogap.

In addition, the strong electronic coupling and delocalization at
the alizarin/TiO2 interface have been further demonstrated by an
experiment using surface-enhanced resonance Raman spectroscopy
excited at 532 nm that can effectively excite the alizarin-TiO2 charge
transfer complex. As shown in Figure 4B, we observed direct
evidence of the formation of the alizarin–TiO2 charge transfer complex: besides the normal vibrational modes from alizarin, we also
observed a new Raman peak at 646 cm
“polariton coupling at TiO2/Au tip nanogap. For the alizarin perturbed
TiO2 surface, electronic delocalization may occur at the mole-
cule/TiO2 interface and can be demonstrated by a blue shift of the
luminescence background and the appearance of the additional 646 cm
line in the resonance Raman spectrum. The results presented here provide direct evidence of the crucial roles
of surface states in solar energy conversion, photocatalysis,
molecular electronics, and surface-enhanced Raman scattering
spectroscopy enhancement.

ASSOCIATED CONTENT

Supporting Information. A numerical simulation and
more confocal images for characterizing single surface states.
This material is available free of charge via the Internet at http://
pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
E-mail: H. Peter Lu, hplu@bgsu.edu; Alfred J. Meixner, alfred.
meixner@uni-tuebingen.de.

Author Contributions
These authors contributed to the work equally.

ACKNOWLEDGMENT

Lu acknowledges the support from the Basic Energy Science
of Department of Energy (Grant DE-FG02-06ER15827) and the
Division of Chemistry of National Science Foundation (Grant
CHE-0822694) of the United States. Meixner acknowledges the
support from the DFG, project ME 1600/11-1, Germany.

REFERENCES

(1) Duncan, W. R.; Prezhdo, O. V. Annu. Rev. Phys. Chem. 2007,
58, 143–184.