1-2003

Photoinduced Electron-transfer Along Alpha-helical And Coiled-coil Metallopeptides

Anna Fedorova

Anita Chaudhari

Michael Y. Ogawa

Bowling Green State University, mogawa@bgsu.edu

Follow this and additional works at: https://scholarworks.bgsu.edu/chem_pub

Part of the Chemistry Commons

Repository Citation
Fedorova, Anna; Chaudhari, Anita; and Ogawa, Michael Y., "Photoinduced Electron-transfer Along Alpha-helical And Coiled-coil Metallopeptides" (2003). Chemistry Faculty Publications. 112.
https://scholarworks.bgsu.edu/chem_pub/112

This Article is brought to you for free and open access by the Chemistry at ScholarWorks@BGSU. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of ScholarWorks@BGSU.
Photoinduced Electron-Transfer along α-Helical and Coiled-Coil Metallopeptides

Anna Fedorova, Anita Chaudhari, and Michael Y. Ogawa*

Contribution from the Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403

Received March 8, 2002; E-mail: mogawa@bgsu.edu

Abstract: A peptide-based electron-transfer system has been designed in which the specific positions of redox-active metal complexes appended to either an α-helix, or an α-helical coiled-coil, can be reversed to test the effect of the helix dipole in controlling photoinduced electron-transfer rates. Two 30-residue apoproteins were prepared having the following sequences: (I) Ac-K-(IEALEGK)-(ICALEGK)-(ICALEGK)-G-amide, and (II) Ac-K-(IEALEGK)-(ICALEGK)-(ICALEGK)-G-amide. Each apoprotein was reacted first with [Ru(bpy)_2(pheno-CIAc)]_2^2+, where bpy = 2,2′-bipyridine and phen-CIAc = 5-chloroacetamido-1,10-phenanthroline, to attach the ruthenium polypyridyl center to the cysteine side-chain of the polypeptide. The isolated products were then reacted with [Ru(NH_3)_6]^3+ to yield the binuclear electron-transfer metallopeptides ET-I and ET-II. In these systems, electron-transfer occurred from the photoexcited ruthenium polypyridyl donor to the pentammine ruthenium (III) acceptor such that the electron-transfer occurred toward the negative end of the helix dipole in ET-I, and toward the positive end in ET-II. Circular dichroism spectroscopy showed that both peptides exist as dimeric α-helical coiled-coils in 100 mM phosphate buffer at pH 7, and as monomeric α-helices in the lower dielectric solvents 2,2,2-trifluoroethanol, and a 1:1 (v/v) mixture of CH_2Cl_2 and 2,2,2-trifluoroethanol. The peptides were predominantly (i.e., 65–72%) α-helical in these solvents. The emission lifetime behavior of ET-I was seen to be identical to that of ET-II in each of the three solvents: no evidence for directional electron-transfer rates was observed. Possible reasons for this behavior are discussed.

Introduction

Studies in the field of de novo protein design have produced new insights into how specific amino acid sequences can fold into predictable and well-defined three-dimensional structures.1-3 Notable examples of this include the design and synthesis of both parallel4-5 and antiparallel6-7 multihelix bundles, in addition to the preparation of multiply stranded β-pleated sheets.8-11 The results from this and other12 work provide important illustrations of how protein conformation may be determined by exerting proper control over the hydrophobic, electrostatic, and hydrogen-bond interactions which may occur within a particular amino acid sequence. In recent years, these efforts have been extended to include the study of metalloprotein structures, as various workers have begun to incorporate metal-binding motifs into known examples of de novo designed protein scaffolds.13,14 An important goal of this research is to understand how the presence of inorganic coordination environments can further influence the conformations of metalloproteins.15-19

In addition to providing further insight into the fundamental principles of protein folding, an essential challenge being addressed in the field of de novo protein design is to investigate the ability of rationally designed structural motifs to affect, and perhaps control, the chemical function of a synthetic protein.20 A type of chemical function that is particularly amenable to this type of study is long-range electron-transfer (ET). Indeed, numerous examples now exist in which structure has been shown to influence the ET reactivity of both proteins21 and

peptide-based model systems. In the past, discussion of this type of structure–function relationship has focused on understanding the abilities of different protein structures to mediate long-range electronic coupling occurring between distantly located donor and acceptor sites. However, several years ago, Fox and co-workers reported evidence for an additional way in which a protein structure might be used to regulate the rates of peptide-based electron-transfer reactions. These workers determined that the rates of photoinduced electron-transfer occurring between a \(N \),\(N \)-dimethylalanine donor and a pyrenylalanine acceptor appended to an \(\alpha \)-helix were significantly faster when the transfer occurred in the \(C \rightarrow N \) direction rather than in the reverse. From this, it was suggested that the electric field generated by the permanent dipole of \(\alpha \)-helices may serve to modulate ET rates in these systems. Thus, it is of interest to see how similar effects can be observed in de novo designed metalloproteins as well. Within this context, the \(\alpha \)-helical coiled-coil motif has been used by our group to design a new class of model metalloproteins from which the mechanisms of biological electron-transfer reactions can be studied. The coiled-coil structure consists of a left-handed supercoil of two \(\alpha \)-helices and is widely used as an oligomerization domain in native proteins. The model metalloproteins we design employ synthetic coiled-coils to serve as well-defined scaffolds onto which inorganic redox centers can be site-specifically attached. Our studies have previously demonstrated that the coiled-coil motif can be used to design model metalloproteins which can undergo either long-range intra-protein electron-transfer that occur across a noncovalent peptide–peptide interface, or inter-protein electron-transfers whose intermolecular ET rates can be modulated by electrostatic protein–protein interactions. In this paper, we describe a new system in which the specific positions of redox-active metal sites appended to the backbone of a single peptide chain can be reversed to learn more about the ability of the helix dipole to control the rates of photoinduced electron-transfer between two charged metal complexes (Figure 1).

Figure 1. Computer model of the electron-transfer metallopeptide ET-I, shown in the coiled-coil conformation.

Materials and Methods

General Methods. UV–vis, electrochemical, and circular dichroism (CD) measurements were performed as previously described. A 0.1 mm path length cell was used for measuring CD spectra in 1:1 (v/v) mixtures of 2,2,2-trifluoroethanol (TFE) and methylene chloride.

Electrospores ionization mass spectra (ESI–MS) were obtained on a Bruker Daltonics Esquire LC–MS at the Department of Chemistry of the University of Toledo, Toledo OH. Cyclic voltammetry was conducted on a BAS 100 W Electrochemical Analyzer using a platinum working electrode, a platinum wire auxiliary electrode, and an Ag/AgCl reference electrode. The instrument was calibrated using an external Ru(bpy)\(_2\) standard (\(E = 1.26 \) V vs NHE).

All peptide metalation reactions were monitored by HPLC on a semipreparative reversed-phase C18 column (Zorbax 300SB–C18, 9.4 \(\times \) 250 mm, \(5 \mu m \) particle size, 300 \(\mu m \) pore size) with an AB gradient of 1% B/min for 20 min followed by a gradient of 0.5% B/min. For both gradients, the flow rate was 2 mL/min and solvent A was 0.1% (v/v) trifluoroacetic acid (HTFA) in water, and solvent B was 0.1% (v/v) HTFA in acetonitrile. Purification of bulk quantities of the peptides was achieved using a preparative C18 column (Zorbax 300SB–C18, 21 \(\times \) 250 mm, \(5 \mu m \) particle size, 300 \(\mu m \) pore size) using the same gradient as described above but at a flow rate of 5 mL/min.

Peptide Synthesis. Solid-phase techniques were used to prepare the 30-residue polypeptides, C10H21(30-mer): Ac-K-(IEALEGK)(ICAELEGK)(IEALEHK)(IEALEGK)-G-amide (I), and H10C21(30-mer): Ac-K-(IEALEGK)(ICAELEGK)(IEALEHK)-G-amide (II), on an Applied Biosystems Model 433A peptide as previously described. ESI–MS \(m/z \) (ion): for C10H21(30-mer) 1088.2 (\([M + 3H]^+ \)), 816.4 (\([M + 4H]^+ \)), 653.4 (\([M + 5H]^+ \)), 544.6 (\([M + 6H]^+ \)), for H10C21(30-mer) 1088.1 (\([M + 3H]^+ \)), 816.5 (\([M + 4H]^+ \)), 653.3 (\([M + 5H]^+ \)), 544.6 (\([M + 6H]^+ \)).

Attachment of the Ruthenium Pentammine Ruthenium Complex to the Cysteine Side-Chain. In a typical procedure, a sample of either C10H21(30-mer) or H10C21(30-mer) (5 mg, 1.3 \(\mu mol \)) was dissolved in 1 mL of 100 mM phosphate buffer at pH 7, and the resulting solution was purged with argon gas for 15–20 min. To this was added solid tris-(2-carboxyethyl)phosphine. After stirring under an argon atmosphere for ca. 20 min, the solution was neutralized by the dropwise addition of 1 M NaOH (aq). A solution of [Ru(bpy)\(_2\)(phen-ClAc)](PF\(_6\))\(_2\), where bpy = 2,2′-bipyridine and phen = 5-chloroacetamido-1,10-phenanthroline, dissolved in a minimum amount of \(N \),\(N \)-dimethylformamide (ca. 0.5 mL) was then added to the reaction mixture. After the mixture was stirred for 4–5 h at room temperature, it was applied directly onto a size-exclusion column (Bio-gel P-2) that was previously equilibrated with 0.1 N HTFA. Elution with the HTFA solution yielded the peptide fraction first followed by the hydrolyzed metal complex. The collected peptide fraction was then analyzed by HPLC and in cases where unreacted apopeptide was detected, the metalation procedure was repeated using a fresh sample of [Ru(bpy)\(_2\)(phen-ClAc)](PF\(_6\))\(_2\). The metalated product, [Ru(bpy)\(_2\)(phen-Ac)-C10H21(30-mer) peptide will be referred to as Ru-I, and the H10(Ru(bpy)\(_2\)(phen-Ac)-C21(30-mer) peptide will be referred to as Ru-II. ESI–MS \(m/z \) (ion): for Ru-I 978.2 (\([M + 4H]^+ \)), 782.7 (\([M + 5H]^+ \)), 652.5 (\([M + 6H]^+ \)), 559.5 (\([M + 7H]^+ \)); for Ru-II 978.3 (\([M + 4H]^+ \)), 782.8 (\([M + 5H]^+ \)), 652.4 (\([M + 6H]^+ \)), 559.4 (\([M + 7H]^+ \)).

Coordination of the Pentammine Ruthenium Complex to the Histidine Side-Chains. The Ru(bpy)\(_2\)(phen)-labeled peptides Ru-I and Ru-II were metalated at their histidine side-chains by treatment with aquopentammine ruthenium (II) as described previously for the metalation of related coiled-coil peptides. However, in the present study, the ruthenium complex was synthesized using the pentammine ruthenium complex as the starting material. The Ru(bpy)\(_2\)(phen)-labeled peptides Ru-I and Ru-II were metalated at their histidine side-chains by treatment with aquopentammine ruthenium (II) as described previously for the metalation of related coiled-coil peptides.

(30) Skourtis, S. S.; Beratan, D. N. In Electron Transfer from Isolated Molecules to Biomolecules, Pt 1, 1999; Vol. 106, pp 377–452.

study, the reaction mixtures were treated with 0.1 N HTFA for 2–3 h prior to purification by reversed-phase HPLC to help remove any glutamate-bound ruthenium pentammine species. The binuclear electron-transfer peptides, [Ru(bpy)2(phenAc)-C10][Ru(NH3)5-H21](30-mer) will hereafter referred to as ET-I, and its substitutional isomer, [Ru(NH3)5-H10][Ru(bpy)2(phenAc)-C21](30-mer) will be referred to as ET-II. ESI–MS m/z (ion): found for ET-I 1366.5 ([M + 3H]+), 1024.4 ([M + 4H]+); for ET-II 1366.1 ([M + 3H]+), 1024.1 ([M + 4H]+), 819.8 ([M + 5H]+).

Results

Synthesis and Characterization of the Metallopeptides.

The two 30-residue polypeptides, C10H21(30-mer) (I): Ac-K-(IEALEGK)(ICALEGK)(IEALEHK)(IEALEGK)-G-amide, and H10C21(30-mer) (II): Ac-K-(IEALEGK)(ICALEHKK)(IEALEGK)-G-amide, and H10C21(30-mer) were designed such that photoinduced electron-transfer involving a ruthenium polypryidyl excited-state donor and a pentammine ruthenium (II) acceptor will occur in a direction that is toward the negative end of the helix dipole in ET-I and toward the positive end in ET-II.

The low synthetic yield of ET-I and ET-II precluded the possibility of measuring their ground-state redox potentials by electrochemical methods. However, previous studies showed that the redox potential of the related Ru(NH3)5-H21(30-mer) peptide was $E = 0.065 \text{ V vs NHE.}$

Cyclic voltammetry performed on the model compound, [Ru(bpy)2(phen-Ac)]2+$^-$, where phen-Ac = 5-acetamido-1,10-phenanthroline showed a single, reversible wave at 1.36 V vs NHE in 0.1 M HTFA. The potential of the related compound, [Ru(dmphen)(phen-AcCl)]2+$^-$ was measured to be $E = 1.20 \text{ V vs NHE}$, where dmphen = 4,7-dimethyl-1,10-phenanthroline and phen-AcCl = 5-chloroacetamido-1,10-phenanthroline.

The UV-Vis spectra of both ET-I and ET-II have maxima at 192, 286, and 451 nm, and can be described as being superpositions of those of the [Ru(bpy)2(phen-C1Ac)]2+$^-$ starting material and the relevant apopeptides. The spectral contributions from the ruthenium pentammine centers are negligible due to the relatively low molar absorptivity of these complexes.

Circular Dichroism Spectroscopy. The circular dichroism (CD) spectra of apopeptides I and II both consist of a positive signal at 194 nm and negative bands at 208 and 222 nm which shows that these peptides are α-helical in nature. When measured in 100 mM phosphate buffer (pH 7, 278 K), the molar ellipticities at 222 nm increased in magnitude at higher concentrations to indicate the formation of the coiled-coil conformation. The concentration data accurately follow eq 1

$$K_d = 2[M_0](1 - \Delta \theta/\Delta \theta_{\max})^2/[(\Delta \theta/\Delta \theta_{\max})]$$

which describes a two-state monomer–dimer equilibrium in which $[M_0]$ is the total peptide concentration, $\Delta \theta = (\theta_{\text{obs}} - \theta_0)$, $\Delta \theta_{\max} = (\theta_{\text{max}} - \theta_0)$, θ_{\max} is the ellipticity of the folded dimer, and θ_0 is the ellipticity of the unfolded monomer taken to be 2500 deg cm2 dmol$^{-1}$. A nonlinear fit of the data obtained for II (not shown) yields values of $K_d = 2.0 \pm 0.40 \mu\text{M}$ and $\theta_{\max} = -27 900 \pm 100 \text{ deg cm}^2 \text{ dmol}^{-1}$. Similar results were obtained for I. A comparison of the values obtained for θ_{\max} to that calculated for an ideal 30-residue α-helix shows that both peptides I and II can attain maximum helicities of ca. 81%. These results are consistent with those obtained for related peptides for which the lower helical content was attributed to end-group disorder.36

The CD spectra of the binuclear peptides ET-I and ET-II are nearly identical to those just described for the related apopeptides. The lack of sample availability precluded the
Emission lifetime experiments performed at ambient temperatures in argon-saturated 100 mM phosphate buffer (pH 7) showed that the luminescence of both Ru-I and Ru-II decayed via

$$I(t) = A_s \exp(-k_s t) + A_l \exp(-k_l t)$$

biexponential kinetics as described by eq 2 in which A_s, k_s and A_l, k_l are the amplitudes and rate constants for the shorter and longer-lived components, respectively. A nonlinear least-squares fit of the data to eq 2 showed that the longer-lived component comprised approximately 90% of the total emission for both metallopeptides. The lifetimes for the major component were $\tau_l = 1/k_l = 1184 \pm 9$ ns for Ru-I and $\tau_l = 1151 \pm 43$ ns for Ru-II (Table 1). These values are consistent with the lifetimes reported for similar ruthenium polypyridyl compounds. 34 The minor decay components of Ru-I and Ru-II had lifetimes of $\tau_s = 150$ ns, and their origin is currently under investigation.

The emission lifetime traces of both Ru-I and Ru-II were solvent-dependent such that single-exponential kinetics were observed when the metallopeptides were dissolved in either TFE or a 1:1 (v/v) mixture of TFE:CH$_2$Cl$_2$, solvents in which the peptides were shown to exist as monomeric α-helices by circular dichroism spectroscopy. As shown in Table 1, the lifetimes of the two mononuclear peptides were nearly identical to one another, having values of $\tau \approx 310$ and 205 ns when dissolved in argon-saturated TFE and 1:1 (v/v) TFE:CH$_2$Cl$_2$, respectively.

Electron-Transfer Properties of ET-I and ET-II. When measured in 100 mM phosphate buffer, pH 7, the emission decay profiles for the binuclear derivatives ET-I and ET-II (Figure 4) differed from those just described for the related donor-only peptides. The decays were considerably more rapid, and whereas the emission from the electron-transfer peptides still followed biexponential decay kinetics, the signals were now dominated by the shorter lifetime components (85–90%). By analogy to the results of previous studies, 38 this quenching of the ruthenium polypyridyl luminescence is attributed to an electron-transfer reaction occurring between the photoexcited ruthenium polypyridyl donors and the pentammine ruthenium (III) acceptors.

Analyses of the data to eq 2 yielded identical values of $\tau_s = 72 \pm 5$ ns for both ET-I and ET-II. As these values were independent of peptide concentration within the range examined (3–25 μM), the quenching process results from an intramolecular electron-transfer event. Analysis of the emission data showed that the lifetimes of the minor decay components were also shortened from those of the parent Ru-I and Ru-II peptides but varied with sample preparation ($\tau_l < 500$ ns). The source of this component is assigned to the presence of a small population of metallopeptides containing glutamate-bound pentammine ruthenium (III) acceptors which were attached to the surface of the peptide in a nonspecific manner. 33

The rate constants for the intramolecular electron-transfer reactions occurring in ET-I and ET-II were calculated according to eq 3 in which τ_{obs} is the observed emission lifetime of the donor–acceptor complex, and τ_0 is the lifetime of the unquenched donor-only peptide. Using values of $\tau_{obs} = 72 \pm 5$ ns for both ET-I and ET-II, and $\tau_0 = 1184 \pm 9$ ns for Ru-I and $\tau_0 = 1151 \pm 43$ ns for Ru-II gave identical values of $k_{et} = (1.3 \pm 1) \times 10^7$ s$^{-1}$ for ET-I and ET-II, respectively. Thus, the data presented in Table 1 show that the two electron-transfer peptides display identical emission lifetime behavior, and that no evidence for directional electron-transfer rates was observed in aqueous solution.

Previous work by the Fox group showed that larger kinetic dipole effects were observed when ET experiments were conducted in solvents of lower dielectric constant. It was observed that in methanol ($\varepsilon = \ldots$), a 5-fold rate enhancement was observed when ET was made to occur in the C to N direction rather than in the opposite direction, which increased to a 24-fold difference in directional ET rates when the experiments were conducted in CH$_2$Cl$_2$ ($\varepsilon = 9$). Thus, to further probe for the potential effects of the helix dipole in modulating the electron-transfer rates in ET-I and ET-II, lifetime experiments were performed in 2,2,2-trifluoroethanol, which has a dielectric constant of $\varepsilon = \ldots$, and in 1:1 (v/v) mixture of 2,2,2-trifluoroethanol and methylene chloride. It is noted that the CD experiments described above showed that both ET-I and ET-II exist as monomeric α-helices under these conditions.

An examination of the data presented in Table 1 shows that the emission behavior of ET-I and ET-II are identical to one another in each of these two low dielectric solvents. In TFE, the emission decays followed biexponential kinetics to a 24-fold difference in directional ET rates when the experiments were performed in CH$_2$Cl$_2$ ($\varepsilon = 9$). Thus, to further probe for the potential effects of the helix dipole in modulating the electron-transfer rates in ET-I and ET-II, lifetime experiments were performed in 2,2,2-trifluoroethanol, which has a dielectric constant of $\varepsilon = \ldots$, and in 1:1 (v/v) mixture of 2,2,2-trifluoroethanol and methylene chloride. It is noted that the CD experiments described above showed that both ET-I and ET-II exist as monomeric α-helices under these conditions.

An examination of the data presented in Table 1 shows that the emission behavior of ET-I and ET-II are identical to one another in each of these two low dielectric solvents. In TFE, the emission decays followed biexponential kinetics (eq 2) to a 24-fold difference in directional ET rates when the experiments were performed in CH$_2$Cl$_2$ ($\varepsilon = 9$). Thus, to further probe for the potential effects of the helix dipole in modulating the electron-transfer rates in ET-I and ET-II, lifetime experiments were performed in 2,2,2-trifluoroethanol, which has a dielectric constant of $\varepsilon = \ldots$, and in 1:1 (v/v) mixture of 2,2,2-trifluoroethanol and methylene chloride. It is noted that the CD experiments described above showed that both ET-I and ET-II exist as monomeric α-helices under these conditions.

An examination of the data presented in Table 1 shows that the emission behavior of ET-I and ET-II are identical to one another in each of these two low dielectric solvents. In TFE, the emission decays followed biexponential kinetics (eq 2) to show the presence of significant populations of unquenched ruthenium polymethylidyne excited-states. This observation suggests the existence of two conformational populations of metallopeptides, each having their metal centers placed at different through-space distances along the α-helical peptide bridge. The lack of quenching in one of these conformations suggests that it positions the redox sites far enough apart to prevent electron-transfer from occurring. Significantly, in the cases where photoinduced electron-transfer does occur, analysis of the data according to eq 3 gave identical values of $k_{et} = \ldots$ for both ET-I and ET-II. Similar behavior was observed when the experiments were performed in TFE: CH$_2$Cl$_2$. The peptides had nearly identical emission lifetimes which yielded similar values of $k_{et} = \ldots$ s$^{-1}$ and $k_{et} = \ldots$ s$^{-1}$ for ET-I and ET-II, respectively. Thus, no significant difference in intramolecular electron-transfer rates was observed between these two peptides in the low dielectric solvents.

Discussion

The metallopeptides ET-I and ET-II were designed to study if the electric field generated by the dipole of an α-helix can be used to control the rates of photoinduced electron-transfer occurring between two pendant metal complexes. In contrast to the results of previous studies involving organic donors and acceptors,$^{30-32}$ no evidence for directional electron-transfer rates was observed for the current system when the experiments were performed in solvents of either high, or low dielectric constant.

Semiclassical Marcus theory39 can be used to further elucidate the electron-transfer properties of ET-I and ET-II. According to this model, the rates of intramolecular ET reactions can be described by

$$ k_{et} = \sqrt{\frac{4\pi^3}{h^2k_B T}} H_{DA}(r) \exp\left(\frac{-(\Delta G^0 + \lambda)^2}{4k_B T}\right) $$

(eq 4) in which the magnitude of k_{et} is controlled by the interplay between the thermodynamic driving force ($-\Delta G^0$) and reorganization energy (λ) for the reaction. $H_{DA}(r)$ is the electronic coupling matrix element which describes how these rates also depend on the strength of the electronic interaction between the donor and acceptor sites. Thus, for a given donor–acceptor separation, values of k_{et} will increase with increasing driving force until reaching a maximum value at $-\Delta G^0 = -\lambda$. From this, it is evident that electron-transfer rates will be most sensitive to changes in driving force under conditions where $-\Delta G^0 \neq \lambda$, and it is within these regimes that the effects of the helix dipole moment should be most easily detected.

The thermodynamic driving force for electron-transfer occurring from a photoexcited electron donor (D*) to an electron-acceptor (A) can be calculated according to eq 5 in which $E_{1/2}(D/D^+)$ is the

$$ \Delta G_{et} = E_{1/2}(D/D^+) - E_{0/0}(D) - E_{1/2}(A/A^-) $$

halfwave potential for the oxidation of the donor, $E_{1/2}(A/A^-)$ is the halfwave potential for the reduction of acceptor, and $E_{0/0}(D)$ is the excited-state energy of the donor. Using values of $E_{0/0}(D) = 2.14$ eV taken from the 77 K emission spectrum of Ru-I and Ru-II, and $E_{1/2}(D/D^+) = 1.36$ eV vs NHE taken from the value measured for the model compound [Ru(bpy)$_2$-2-...
An approximate value for the reorganization energy, λ_{12}, can be obtained from the Marcus cross relation (eq 6)

$$\lambda_{12} = 1/2 \left[\lambda_{11} + \lambda_{22} \right]$$

where λ_{11} and λ_{22} are the self-exchange reorganization energies for the donor and acceptor species, respectively. Substitution of the previously reported values of $\lambda_{11} = 0.6$ eV for Ru(bpy)$_3$ and $\lambda_{22} = 1.20$ eV for Ru(NH$_3$)$_5$pyr yields a value of $\lambda_{12} = 0.9$ eV. From these calculations, it appears that the photoinduced electron-transfer reactions occurring in ET-I and ET-II will occur toward the top of the Marcus curve and may have rates that will be relatively insensitive to changes in driving force. To test this prediction, an analogue to ET-II was prepared in which the two 2,2'-bipyridyl ligands of the ruthenium polypyridyl center were replaced by 4,7-dimethyl-1,10-phenanthroline to yield the ET derivative ET(dmphen)-II. The redox potential of its relevant model compound, [Ru(dmphen)$_2$(phen-Ac)$_2$], was lowered to $E = 1.20$ V by the presence of the electron-donating methyl groups on the 1,10-phenanthroline ligand. The emission from the mononuclear parent peptide decayed via single-exponential kinetics to give a lifetime of 1.55 ns. Upon introduction of the ruthenium pentammine acceptor, the lifetime became shortened and followed biexponential kinetics. The dominant component comprised 80% of the decay and had a lifetime of 170 ns. The minor component had a lifetime of 1.55 ns. The decay of ET(dmphen)-II may be due to other unknown factors, such as a slightly longer donor–acceptor distance. Nevertheless, the available results indicate that the absence of directional electron-transfer rates in ET-I and ET-II is not due to the high driving force of these reactions.

In summary, the metallopeptides ET-I and ET-II show no evidence for the occurrence of directional electron-transfer rates resulting from the electric field of the helix dipole in aqueous solution, TFE, or a 1:1 (v/v) mixture of CH$_2$Cl$_2$/TFE, solvents in which the peptides were shown to exist as either two-stranded α-helical coiled-coils or as monomeric α-helices. This behavior is in marked contrast to that observed for the systems studied by Fox and co-workers in which directional ET rates were observed for N,N-dimethylanilino donors and pyrenyl acceptors appended to α-helical peptides. Whereas, the reason for this apparent discrepancy is presently not understood, important differences do exist between the two systems studied. First, whereas the earlier work examined the rates of photoinduced electron-transfer occurring between nonpolar redox centers, the peptides ET-I and ET-II employ charged, davalent and trivalent, metal complexes as their donor and acceptor sites. It is possible that the electrostatic effects generated by the presence of these charged complexes may dominate over those exerted by the helix dipole. Second, the metallopeptide systems use a flexible acetyl linker to attach the ruthenium polypyridyl complex to the peptide chain which can place this redox site at distances ranging from ca. 3–8 Å away from the helix axis (edge-to-backbone). This may also serve to reduce the effects of the helix dipole in regulating ET rates. Third, to minimize potential complications arising from the known conformational flexibility of peptide termini, the donor and acceptor sites in ET-I and ET-II were positioned within the second heptad away from the ends of the sequence. In contrast, the earlier work had its redox sites located closer to the peptide termini. Thus, to determine if any of these factors contribute to the absence of a helix dipole effect, studies are currently underway to design systems which use redox sites that consist of neutral metal complexes, which do not require the use of an acetyl linker, and which can be placed at different regions of the sequence. This work will help elucidate the necessary requirements for allowing the helix dipole moment to regulate electron-transfer rates in de novo designed metallopeptides and metalloproteins.

Acknowledgment. The authors would like to thank Professors F. Castellano and M. Funk for use of the laser and mass spectral facilities, respectively. Electrochemical measurements were performed by Mr. Liu Liu. This work was supported by the National Institutes of Health through Grant No. R01 GM61171 and the Petroleum Research Fund through Grant No. 34901-A.C. A.F. gratefully acknowledges receipt of a predoctoral fellowship from the Harold and Helen McMaster Foundation.