River drying lowers the diversity and alters the composition of an assemblage of desert riparian arthropods

Kevin E. McCluney
Bowling Green State University, kmcclun@bgsu.edu

John L. Sabo
River drying lowers diversity and alters composition of a desert riparian arthropod community

Running title: Riparian arthropods along a drying river

Kevin E. McCluney* and John L. Sabo

School of Life Sciences, Arizona State University, Tempe, AZ, United States of America

Keywords: River drying, drought, riparian, arthropod, water availability

* Corresponding author: Kevin.McCluney@asu.edu
Summary

1. Many studies have shown negative effects of river drying on in-stream animals. However, the influence of river drying on riparian animals remains poorly studied.

2. We examined ground-dwelling riparian arthropod assemblages along a drying section of the semi-arid San Pedro River in southeastern Arizona, USA.

3. We found strong differences in assemblage composition, taxon diversity and the abundance of key taxa between dry and flowing sites, with higher diversity and abundance of most taxa at flowing sites.

4. Changes in assemblage composition, taxon diversity, and abundance of representative taxa were associated with a combined measure of water availability that included distance to water and type of water. Other environmental variables showed a weaker association with changes in these arthropod assemblages.

5. Thus, we found evidence that desert riparian arthropods are sensitive to river drying and to reduction in water resources. Increases in drying along this river may reduce diversity and the abundance of many groups of ground-dwelling arthropods leading to marked shifts in community composition.
Introduction

Rivers around the world are drying with increasing frequency, including large rivers, such as the Yellow River in China and the Colorado in the USA (e.g. Zusman, 2000; Tockner & Stanford, 2002; Gleick, 2003; Pearce, 2006; Stone & Jia, 2006). Droughts related to climate change and increased human appropriation of water resources have led to declining ground and surface waters in many regions, contributing to river drying (e.g. Pool & Coes, 1999).

Much recent research has concentrated on the effects of river drying on in-stream aquatic communities and ecosystems (e.g. Stanley et al., 1994; Feminella, 1996; Baldwin & Mitchell, 2000; Arthington et al., 2010; Larned et al., 2010; Ludlam & Magoullick, 2010). This work has documented strong effects of river drying on the dynamics of aquatic macroinvertebrates, and their taxonomic richness, abundance and community composition (e.g. Clarke et al., 2010), as well as on ecosystem processes such as litter decomposition (e.g. Leberfinger, Bohman & Herrmann, 2010). Some research has suggested that, after rewetting, previously dry reaches are quickly re-colonized from nearby perennial reaches (Clarke et al., 2010) or potentially from underground refugia or resistant life-stages (Stubbington et al., 2009), minimizing long-term effects, whereas others have found lasting effects of drying events (Sponseller et al., 2010). One recent study has implicated river permanence as a key factor controlling aquatic food chain length, with much shorter food chains in rivers that dried at some point within the last decade (Sabo et al., 2010). Clearly, and as one might expect, river communities and ecosystems are greatly influenced by river drying.

Terrestrial organisms living near the river may also be strongly linked to declining surface and groundwater. For example, changes in riparian plant community composition and diversity in the southwestern US are associated with altered flow regimes (Stromberg, Tiller &
Recent research has sought to relate changes in riparian arthropod assemblages with floods, river regulation and other changes in flow regime (Ellis, Crawford & Molles, 2001; Cartron et al., 2003; Paetzold, Yoshimura & Tockner, 2008). For example, Lambeets et al. (2008) explored the associations between a suite of environmental factors and spider and carabid beetle assemblages along the Meuse River in N. Europe, finding that the composition of these assemblages varied with flooding disturbance, vegetation density and siltation. Direct examination of the effects of river drying on riparian arthropods is still needed.

In contrast to the rich literature showing effects of reduced flows and drying on aquatic organisms and riparian plants, and some research relating the flood regime with riparian animal communities, less is known about the effects of drying on riparian animals. Since the aquatic and terrestrial components of riverine landscapes are strongly connected and riparian consumers often depend on aquatic subsidies (Nakano & Murakami, 2001; Baxter, Fausch & Saunders, 2005), one would expect drying to influence riparian animal communities. However this effect may be reduced compared to aquatic communities, considering the high productivity of terrestrial riparian zones (National_Research_Council, 2002) and the ability for some riparian consumers to switch to terrestrial prey (Sabo & Power, 2002). Additionally, in dryland regions,
river drying may directly influence riparian communities through a decrease in water availability—decreases have direct consequences for animal physiology (Hadley, 1994), behaviour (Davis & Denardo, 2006) and trophic interactions (McCluney & Sabo, 2009). One recent study also showed a decline in the abundance of riparian fishing spiders with river drying in New Zealand (Greenwood & McIntosh, 2010). Drying was associated with a decline in aquatic, but not terrestrial, prey. In the laboratory, these spiders were shown to be intolerant to desiccation, which was alleviated by access to moist prey (similar to McCluney & Sabo, 2009). Thus, the river provided this species with important food and water resources.

Here we ask how the distribution and diversity of riparian arthropods varies along a drying section of the San Pedro River, a desert river in semi-arid southeastern Arizona, USA. We expected that riparian arthropod assemblages would be influenced by river drying, but that the magnitude of effects would vary among taxonomic groups. More specifically, riparian predators that are known to rely on subsidies of aquatic invertebrates are likely to be most strongly influenced by river drying, but the composition of the entire arthropod community could also be altered through combinations of changes in water availability and trophic interactions. Therefore, we (1) compared arthropod assemblage composition, diversity and abundance along dry and flowing sections of a 6 km section of the river (Fig 1) and (2) examined associations between biological responses and several environmental factors, including availability of river-derived resources.

Methods

Study System
The San Pedro River is one of the last free-flowing rivers in the western US, originating in northern Mexico and flowing north across the US border for over 100 km until reaching the Gila River, part of the Colorado River drainage. The San Pedro River experiences seasonal periods of drying that have been exacerbated by recent droughts and increased withdrawals of groundwater (Pool & Coes, 1999). Our research was conducted along a section that has dried with increasing frequency in recent years, partly due to municipal pumping from the regional aquifer and local climate change (Pool & Coes, 1999). Floodplain habitats along the San Pedro are characterized by cottonwood (Populus fremontii S. Watson) and willow (Salix gooddingii C.R. Ball) trees, whereas uplands are characterized by plants of the Chihuahuan desert scrub to the south and Sonoran desert to the north. In places where surface water permanence has declined and groundwater tables have fallen substantially, the floodplain is often dominated by introduced Tamarisk (Tamarix chinensis Lour). The river is subject to dramatic changes in stream flow and experiences severe floods in the late-summer rainy season. A wide floodplain has developed along much of the river, which is often covered by riparian trees and a forest floor blanketed with leaf litter.

The San Pedro River valley harbours a high diversity of birds (~100 breeding species and another 250 migratory), mammals (~80 species), and reptiles and amphibians (~65 species), including endangered species, such as the southwestern willow flycatcher (Empidonax traillii extimus Phillips) (Stromberg & Tellmann, 2009). This river and other riparian areas in the southwest appear to be important stop-over points for migrating birds (Skagen et al., 1998). Thus, this region has been identified as particularly important for conservation purposes by The Nature Conservancy. A large section of the riparian corridor in the upper basin is designated as a national conservation area and is managed by the US Bureau of Land Management. However,
the San Pedro is affected by land-use changes outside the conservation area, through effects of regional groundwater pumping on baseflows within the river (Pool & Coes, 1999).

Understanding the effects of groundwater pumping on this river is a high priority (Stromberg & Tellmann, 2009). Our study took place along the upper San Pedro, including both flowing and drying sections of the river channel adjacent to Boquillas Ranch House (31º41’50.95” N, 110º10’57.15” W), near the town of Tombstone, AZ (Fig 1). This portion of the San Pedro, in particular, is thought to be influenced by municipal groundwater pumping (Pool & Coes, 1999).

Methods

We collected pitfall trap samples in the dry portion of the active channel along a 6 km section of the river (Fig 1: see Supporting Information Text S1 for details of construction). While most of the samples were collected in unmanipulated areas, 10 of the sampling locations were near artificially constructed and maintained pools measuring approximately 1 m in diameter (Fig 1; Text S1). The river was flowing at all sites on 14 May 2006, but had dried near many of the sites by 25 June 2006. There were a total of 62 sites over the entire experimental period, but only 35 sites on the final sampling date (25 June 2006; see Supporting Information Table S1).

While our initial sampling design was intended to include sites near the flowing river, natural pools, artificial pools and dry sites, the river dried more quickly and completely than anticipated, so we were forced to chose new natural pool and flowing sites over the course of the sampling period, while abandoning some of our previous sites (due to sampling constraints).

Two pitfall traps were set at each site, with one within 0.5 m on either side of the water body that was present at initial placement. Within a week of each sampling event (in between each sampling event), we recorded the distance between each trap and the nearest water body (flowing river, natural pool, artificial pool). We did not measure distances beyond 55 m,
considering these locations to be dry. Once a site had dried, it stayed dry, with no reinstatement of flows during the study period. We also measured the distance from each trap to the nearest channel bank, as our traps were generally located in the dry portion of the river channel with low cover of litter and vegetation. This variable may be of importance, because arthropods may inhabit banks or floodplain habitats with more litter and vegetation during the day, but move into the channel at night. For instance, we have observed field crickets (*Gryllus alogus* Rehn) moving from channel banks into the dry portion of the channel at sunset. We also measured the percent cover of herbaceous vegetation within a 1 m diameter circle of the trap by visual approximation in 5% categories. Further, we classified the substratum near the trap by visual approximation of soil type and rock size classes. Later, these descriptors were categorized into a structural rating between 0 and 5 (see Table 1). On the final sampling date, we also measured the relative cover of leaf litter in four categories (none, low, medium or high). On this date, we recorded the presence of cottonwood or willow trees near the traps.

Arthropods were collected in pitfall traps lined with Tangle-trap™ (The Tanglefoot Company, Grand Rapids, MI, USA) on the bottom 4 cm of 473 mL (16 oz) party cups and left open for 24 hours. Traps were processed by freezing, thawing, soaking in mineral oil and filtering (0.5 μm) (see Text S1). Due to biases inherent in our collection and processing, we excluded all arthropods less than 1 mm in length from our analysis as well as all mites and Collembola. All remaining arthropods were typically identified to family. Ground beetles (family: Carabidae) were identified to genus. We used Borrer *et al.* (1992), Ubick *et al.* (2005) and Arnett & Thomas (2000) to identify our samples. We also categorized arthropods into feeding guilds using Arnett & Thomas (2000), Hamback *et al.* (2009), Hering (1998) and general knowledge (e.g. all spiders in our samples were assumed to be predators).
GENERAL DESCRIPTION—To assess the effect of river drying, we first quantified differences in the riparian arthropod community between locations that were dry or adjacent to flowing river (Fig 1). We then examined associations between environmental factors (Table 1) and the arthropod community. This second analysis included additional sites near natural and artificial pools (Fig 1; Table S1). In all cases, we conducted analyses at two taxonomic levels. First, we examined all arthropod families collected in traps, including flying insects. Second, we conducted analyses for genera in the ground beetle family Carabidae. We also examined total abundance of all arthropods, arthropods known to be predators and those known to consume some animal material (this included omnivores). Similar techniques were used for analyses of both taxonomic groups. We note any differences below.

We typically collected two traps per sampling location, but for statistical analyses we calculated mean values for each location. Levels of environmental characteristics measured for each trap were also averaged. Thus we obtained single values for the abundance and environmental characteristics of each location. Due to difficulties in maintaining our desired river state categories in the face of rapid river drying, we sampled some sites repeatedly for all four collections, while other sites were sampled only once, twice, or thrice. Statistical approaches that dealt adequately with this incomplete repeated sampling were not available. Thus, we chose only the final sampling date for all our statistical analyses (when there was substantial variation in stream flow across sites).

We assessed and eliminated multi-collinearity using variance inflation factors (VIF) following Meyers (1990) (see Text S1). Our environmental variables representing leaf litter and the presence of riparian trees were collinear and leaf litter was removed from all analyses in
favour of presence of trees, which was likely to control the distribution of leaf litter, as well as
the availability of greenfall (freshly fallen moist green leaves). Distance to water and type of
water were also collinear. Rather than remove one of these variables from the analyses, we used
principal components analysis (PCA) in R v. 2.9.0 to combine these two factors into a single
factor representing river resources more generally (PC1). However, to improve interpretability,
we used the normalized inverse of the original values (max value – actual value) of distance to
water and created numerical categories of water type with dry sites equal to 1, artificial pools
equal to 2, natural pools equal to 3, and stream sites equal to 4. Thus, in general, most types of
river resources (i.e. drinking water and emergent insects) should increase with increasing values
of PC1.

**ANALYSING MULTIVARIATE RESPONSES**—We tested for differences in community composition
between dry and flowing sites, as well as for associations between environmental factors and
community composition using non-parametric permutational multivariate ANOVA (*adonis*) in
the VEGAN package of R v. 2.9.0 (4999 permutations; see Text S1 for additional details). Data
were natural log-transformed prior to all multivariate analyses.

To display differences in assemblage composition between flowing and dry sites, or
associations of assemblages with environmental variables, we used non-metric multidimensional
scaling (*metaMDS*) with the *envfit* vector plotting function in the VEGAN package of R v. 2.9.0.
For environmental association graphs, we calculated proximity to channel bank instead of
distance by taking the normalized inverse of the original values (max value – actual value). This
approach improved simplicity of interpretation of graphs, by making the direction of increase
correspond to increasing proximity to the channel bank (increasing proximity to leaf litter,
vegetation, etc). Thus taxonomic groups aligned along an environmental axis could be
interpreted as associated with this factor more clearly. All multivariate community composition techniques employed Bray-Curtis distances.

**ANALYSING UNIVARIATE RESPONSES**—Next, we tested for differences in total abundance, diversity, the abundance of predators, the abundance of consumers known to eat at least some animal material and the abundance of key taxa, between flowing and dry sites, using general linear modelling ($glm$) in R v.2.9.0. We then performed similar analyses examining associations between environmental factors (Table 1) and these same responses. We employed Shannon’s diversity and Pielou’s evenness, in addition to richness, as our estimates of diversity. Pielou’s evenness is a good measure for our type of dataset and study question because it is relatively insensitive to the effects of rare taxa (Beisel *et al.*, 2003). Tests of mean total abundance and diversity assumed a Gaussian distribution, whereas tests of taxa or functional group abundance assumed a quasi-Poisson distribution, since these datasets often contained a large number of zeros and this distribution is better for modelling such datasets (Potts & Elith, 2006). Total abundance data were natural log transformed prior to analysis, whereas taxon abundance data were rounded to the nearest integer prior to analysis (for the use of a quasi-Poisson distribution).

In all tests, we evaluate differences assuming a Type-I error rate of $\alpha = 0.1$ given our low sample sizes and our goal of identifying patterns rather than testing causal relationships; however, we report exact $P$ values so that patterns at the more conservative Type-I error rate ($\alpha = 0.05$) can be easily assessed.

**Spatial autocorrelation**

Due to the varying distances between our sampling locations, spatial correlation could be an important source of variation in our study. Currently, no good methods exist for detecting and correcting for spatial autocorrelation with multivariate community data (Gilbert & Bennett,
Results

Total abundance and abundance of functional groups

We found significantly higher abundance of all known predators at flowing sites than at dry sites (Table 2; Table S3) and predators were positively associated with river resources (i.e. water and/or aquatic invertebrates) and negatively associated with distance to the nearest channel bank (higher near channel bank; Table 3; Table S4). Significant spatial autocorrelation was apparent for these relationships (Tables S5 and S6). There were no significant differences in the total abundance of all arthropods, or the abundance of consumers known to consume at least some animal material, nor did we find any association of predators with other environmental variables (Table S3, Table S4).

Arthropod families

Shannon’s diversity and familial richness were higher at flowing than dry sites (Table 2, Table S3) and there was a significant positive association between familial richness and river resources, but no other associations (Table 3, Table S4). These relationships did not show spatial autocorrelation (Tables S5 and S6).

Assemblage composition also differed significantly between dry and flowing sites (F = 2.23, df = 1,16, P = 0.021; Fig 2; Table 2; Table S7) and there was a significant association between assemblage composition and river resources (Fig 3; Table 3; Table S7). These community differences seem to have been driven by higher abundances of field crickets (Gryllidae), wolf spiders (Lycosidae), rove beetles (Staphylinidae) and shore bugs (Saldidae) at...
In addition to associations with river drying and river resources, several taxa showed significant associations with other environmental factors. Wolf spiders (Lycosidae) and shore bugs (Saldidae) were more abundant nearer to the channel bank, but pygmy grasshoppers (Tetrigidae) were more abundant farther from the channel bank (Table 3, Table S9). Both pygmy mole crickets (Tridactylidae) and pygmy grasshoppers (Tetrigidae) were more abundant with less herbaceous ground cover (Table 3, Table S9), but pygmy grasshoppers were also more abundant where cottonwood and willow trees were in close proximity. Pygmy grasshoppers were the only family to respond to substrate complexity, with greater abundance at intermediate complexity (e.g. coble bars with small to medium sized rocks and sand or gravel, see Table 1; Table 3; Table S9). There were no significant associations between environmental factors and the abundance of Gryllidae, Carabidae, Formicidae, Elateridae, Noctuidae, Linyphiidae, Anthicidae, Staphylinidae and Rhaphidophoridae (Table S9). Only the relationship between wolf spiders (Lycosidae) and distance to the channel bank showed significant spatial autocorrelation (Table S6).

**Carabid genera**

Similarly to the results for the diversity of arthropod families, Shannon’s diversity and the richness of carabid beetle genera were higher at flowing sites than at dry sites (Table 2, Table S11) and there was a positive association between river resources and generic richness. Differing from the family-level results, Shannon’s diversity and Pielou’s evenness of carabid genera were additionally positively related to river resources. Shannon’s diversity and generic
richness were also higher near the channel bank (Table 3, Table S12). All of these relationships showed significant spatial influence except for the difference in Shannon’s diversity between dry and flowing sites and the association between Pielou’s evenness and water resources.

Like for the patterns of familial assemblage composition (and carabid diversity), we found a significant difference in carabid assemblage composition between dry and flowing sites (F = 33.78, df = 1, 16, \( P = 0.000 \); Fig 4; Table 3; Table S10) and significant associations between carabid assemblages and river resources (Fig 5, Table 3, Table S10). River related differences in carabid assemblages were likely driven by higher abundances of the carabid beetle genera *Brachinus*, *Agonum*, *Lachnophorus*, *Chlaenius* and *Bembidion* at flowing than dry sites (Table 2, Table S13), along with positive associations of these genera with river resources (Table 3, Table S14). Lower abundance of the genus *Syntomus* at flowing sites (Table 2, Table S13) and negative associations of this genus with river resources (Table 3, Table S14) also contributed to differences in carabid assemblages. Differences in *Lachnophorus*, *Bembidion* and *Syntomus* between dry and flowing sites showed significant spatial autocorrelation, as did associations of *Brachinus*, *Agonum*, *Lachnophorus*, *Chlaenius*, *Bembidion* and *Syntomus* with river resources.

Differing from the results for familial assemblage composition, carabid genera assemblage composition was found to be additionally associated with distance from the channel bank and substratum complexity (Fig 5, Table 3, Table S10). The significant influence of the channel bank on composition was likely driven by higher abundances of *Brachinus*, *Agonum*, *Lachnophorus*, *Chlaenius*, *Bembidion* and *Schizogenius* near the channel bank (Table 3, Table S14). Additionally, the higher abundance of *Lachnophorous* at low to intermediate substratum complexity (e.g. sand or gravel and small rocks, see Table 1; Table S14) likely contributed to the relationship between this factor and carabid assemblage composition. Some carabid genera were
related to environmental variables in ways that did not manifest in assemblage differences.  

*Schizogenius, Chlaenius* and *Agonum* were found to be negatively associated with percent herbaceous ground cover (Table 3, Table S14) and *Schizogenius* was higher without cottonwood or willow trees present (Table 3, Table S14). All of these relationships showed significant spatial influence (Table S6).

**Discussion**

Recent global changes are drastically altering the distribution of water resources. One result has been dewatering of rivers around the world (Gleick, 2003; Pearce, 2006). Little information is available about how these drying events influence riparian animal communities. Here we show that river drying is associated with alterations of riparian arthropod assemblage composition, a decline in taxon diversity and reductions in the abundance of several taxa. Further, direct access to river-related resources (e.g. water, aquatic food) may help explain these patterns, since this factor is more strongly correlated with differences in these arthropod communities than other habitat characteristics. These associations are apparent for riparian arthropod families and appear strong when focussing on genera within the ground beetle family (Carabidae). Thus, this study suggests that many desert riparian arthropods are sensitive to river drying events and changes in water availability and thus may require the existence of at least some perennial flows within a river network for persistence.

While we cannot separate whether drinking water or emergent insects were more important in driving the response of arthropods to river resources, insect emergence from rivers in this region has been found to be relatively low at the end of June, with peak emergence generally occurring earlier in the year (Hagen, 2010). This suggests water may be directly important as a resource for this arthropod community in June when dry conditions prevail, in
addition to the important effects of emergence of aquatic insects documented in other systems (e.g. Paetzold, Bernet & Tockner, 2006) and likely still important here. For example, pygmy grasshoppers in the family Tettigoniidae are known to eat mostly moist, recently stranded algae (Bastow et al., 2002) and bombardier beetles in the carabid genus Brachinus are known to have ectoparasitic larvae of aquatic diving beetles in the family Dytiscidae (Juliano, 1985). Both of these taxa were positively associated with river resources in our study. These examples highlight the important roles rivers play as both water and food resources for riparian arthropods.

Desert riparian zones harbour cosmopolitan species

Drying may be particularly common along desert rivers (Kingsford, 2006). Many species living in desert uplands (Noy-Meir, 1974; Polis & Seely, 1990; Davis & DeNardo, 2007) or within rivers (Meffe & Minckley, 1987; Beche, McElravy & Resh, 2006; Kingsford, 2006) have traits that help them cope with the challenges of highly variable desert environments. Therefore, one might be tempted to predict that desert riparian zones contain species that are well adapted and relatively insensitive to drying events. However, many of the riparian arthropods in our study are distributed along rivers throughout North America. For instance, the most common large spider collected in our study, the beach wolf spider, Arctosa litoralis Hentz, is widely distributed across North America (Ubick et al., 2005; Punzo, 2006). Most of the carabid beetle genera we found are also widely distributed throughout North America, although individual species within these genera may or may not be widely distributed. For instance, bombardier beetles (Carabidae: Brachinus) and the genus Syntomus, which contains only one species in North America, Syntomus americanus Dejean, are widely distributed across the continent (Arnett & Thomas, 2000). Thus, desert riparian zones often harbour a cosmopolitan fauna dominated by taxonomic groups also found in more mesic environments. This result is consistent with
previous evidence that riparian zones contain different species than uplands (Sabo et al., 2005b). In fact, floodplain forests along desert rivers may act as oases, showing more mesic environmental characteristics than do adjacent uplands (Skagen et al., 1998; Sabo et al., 2008).

The mixture of widely and locally distributed taxa among those collected, suggests the intriguing hypothesis that the relative endemism of each taxonomic group may be a good predictor of the degree to which it is influenced by river drying or to which it is associated with measures of water availability, with more endemic species being less influenced by drying. However, our data do not support this hypothesis. For example, the beach wolf spider (Lycosidae: *A. littoralis* Hentz), which made up most of the individuals collected in the family Lycosidae, is widespread (Punzo, 2006), but the family Lycosidae did not show a significant association with river resources (though abundance was higher overall at flowing sites). Similarly, the carabid beetle, *S. americanus* Dejean, is found throughout North America (Arnett & Thomas, 2000), but its abundance was higher at dry sites and farther from water bodies. On the other hand, the carabid beetle *Lachnophorus elegantulus* Dejean (the only representative of this genus in this area) is most commonly found in the southwestern US (Arnett & Thomas, 2000), but its abundance was lower at dry locations and farther from water bodies. Therefore, the responses of each taxonomic group to river drying and the association with environmental characteristics are not strictly predictable by regional distribution. This suggests a) some species most abundant in desert regions are still sensitive to river drying (e.g. *L. elegantulus* Dejean), particularly along historically perennial rivers like the San Pedro and b) that species interactions (e.g. McCluney & Sabo, 2009) or life history constraints (e.g. Juliano, 1985) may be modulating the observed response to river drying.

*Floodplain versus dry channel habitats*
Generally, we found that predator abundance, some metrics of diversity, and abundance of some families and carabid genera were higher nearer the channel bank (Table 3). This suggests an important positive aspect of the transition zone between floodplain and channel, such as the availability of increased structure or vegetation, the overlap of species between these two habitat types, or decreased danger of flow-related disturbance. However, we observed some taxa that were more abundant farther from the channel bank, with less herbaceous cover, or without cottonwood trees nearby. While these preferences for more open environments may be due to energy balance requirements or predator avoidance (e.g. wolf spiders were higher near channel banks), the preference may also reflect our choice of study location. Our research focussed on the river channel itself and did not sample the wide floodplains that occur along this river. These floodplains probably harbour a different suite of arthropods that may be better suited to habitats with leaf litter, herbaceous vegetation and shade. For instance, the large wolf spider *A. littoralis* Hentz, is abundant in the river channel along the San Pedro, but is rarely found in floodplain habitats, which instead are dominated by the wolf spider *Hogna antelucana* Montgomery, which in turn is rarely found in the river channel (K. McCluney and J. Sabo, personal observations).

**Spatial autocorrelation**

Significant spatial autocorrelation was observed for some of our responses, but not others, with spatial effects more commonly observed for the abundance of particular taxa and less commonly for patterns of diversity and predator abundance (Table S5 and S6). In some cases, local migration may cause spatial autocorrelation and may explain patterns instead of the relevant site characteristics. However, we note that, in comparisons between dry and flowing sites, all four flowing sites were clumped together and separated from dry sites (Fig 1). Thus, significant spatial autocorrelation would be likely to occur, even if differences in responses were
completely associated with river drying. However, our analysis was concerned with identifying patterns of variation of riparian arthropods along this drying river rather than testing for causal relationships. A related study that manipulated water resources along this river segment as it dried, and avoided these spatial issues, found similar patterns for diversity, composition, and biomass of some of these taxa (McCluney, 2010).

Conclusion

Overall, we found evidence that short-term river drying can substantially influence riparian arthropod communities and that direct access to the resources associated with river water may be an important part of the effect. In general, we found a decrease in diversity and in abundance of many taxa associated with river drying, with an increase in only one carabid beetle genus. Riparian arthropods make up an important component of the diet of higher consumers, such as birds, skunks and foxes (Sabo, Soykan & Keller, 2005a; Soykan, 2007). Thus, they are important in the conservation of the entire suite of organisms living along the river. Achieving a balance between human and non-human water needs in this region and other similar regions will require an understanding of the connections between groundwater pumping and in-stream and riparian ecology. Our study helps provide some of the first information linking groundwater withdrawals to the invertebrate resource base of riparian animal communities.
Acknowledgments

We wish to thank S. Anderson of Gray Hawk Nature Center for accommodation and support and the US Bureau of Land Management for permission to work on lands under their management. We thank Y. Marusenko, L. Thompson, C. Soykan and N. McCluney for assistance in the field and laboratory and M. Tseng for assistance with identification. We thank J. Oksanen for statistical advice on spatial autocorrelation and two anonymous reviewers and A. Hildrew for helpful comments and editing. This study was funded by EPA STAR grant FP-91649201 to K. McCluney and the Brian Daniel Corrigan Foundation.
References


Running Head: Riparian arthropods along a drying river  

In Press: Freshwater Biology


### TABLE 1. Description of each environmental factor measured.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substratum Complexity</td>
<td>Score out of 5: Sand/Clay/Silt = 1, Gravel = 2, Rocks&lt;10cm = 3, Rocks 10-40 cm = 4, Rocks&gt;40 cm = 5 (If the rocks were in clay, it lowered the score by 1)</td>
</tr>
<tr>
<td>Distance to Water</td>
<td>Distance between the trap and the nearest water source (up to 55 m)</td>
</tr>
<tr>
<td>Type of Water</td>
<td>Classification into categories of flowing stream, natural pool, artificial pool, dry site.</td>
</tr>
<tr>
<td>Water Resources</td>
<td>Principal component 1 from principal components analysis (PCA) of distance to water and type of water. However, original factors were converted so that water resources increase with increasing values of PC1 (see Methods).</td>
</tr>
<tr>
<td>Distance to Channel Bank</td>
<td>Distance between the trap and the nearest channel bank. Proximity to channel bank was calculated for interpretability in graphs (see Methods).</td>
</tr>
<tr>
<td>Percent Herbaceous Cover</td>
<td>Visual estimates of herbaceous ground cover within 1 m diameter of each trap, divided into 5% categories</td>
</tr>
<tr>
<td>Litter</td>
<td>Not examined due to collinearity with other factors.</td>
</tr>
<tr>
<td>Presence of Cottonwood or Willow Trees</td>
<td>Whether or not cottonwood or willow trees were found near the trap (close enough for leaves to commonly fall near the trap)</td>
</tr>
</tbody>
</table>
TABLE 2. Significant results for differences between flowing and dry sites on 25 June 2006. Grey highlighting indicates significance only at $\alpha = 0.1$, while all other reported metrics are significant at $\alpha = 0.05$.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Type of site with higher level of metric</th>
<th>F</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abundance of known predators</td>
<td>Flowing</td>
<td>24.352</td>
<td>1, 16</td>
<td>0.000</td>
</tr>
<tr>
<td>Families</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community composition</td>
<td>NA</td>
<td>2.234</td>
<td>1, 16</td>
<td>0.021</td>
</tr>
<tr>
<td>Shannon's diversity</td>
<td>Flowing</td>
<td>5.350</td>
<td>1, 16</td>
<td>0.034</td>
</tr>
<tr>
<td>Richness</td>
<td>Flowing</td>
<td>5.983</td>
<td>1, 16</td>
<td>0.026</td>
</tr>
<tr>
<td>Gryllidae abundance</td>
<td>Flowing</td>
<td>5.062</td>
<td>1, 16</td>
<td>0.039</td>
</tr>
<tr>
<td>Lycosidae abundance</td>
<td>Flowing</td>
<td>10.023</td>
<td>1, 16</td>
<td>0.005</td>
</tr>
<tr>
<td>Staphylinidae abundance</td>
<td>Flowing</td>
<td>4.780</td>
<td>1, 16</td>
<td>0.044</td>
</tr>
<tr>
<td>Saldidae abundance</td>
<td>Flowing</td>
<td>23.822</td>
<td>1, 16</td>
<td>0.000</td>
</tr>
<tr>
<td>Carabid Genera</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community composition</td>
<td>NA</td>
<td>33.777</td>
<td>1, 16</td>
<td>0.000</td>
</tr>
<tr>
<td>Shannon's diversity</td>
<td>Flowing</td>
<td>12.0829</td>
<td>1, 16</td>
<td>0.003</td>
</tr>
<tr>
<td>Richness</td>
<td>Flowing</td>
<td>27.346</td>
<td>1, 16</td>
<td>0.000</td>
</tr>
<tr>
<td><em>Brachinus</em> abundance</td>
<td>Flowing</td>
<td>8.042</td>
<td>1, 16</td>
<td>0.012</td>
</tr>
<tr>
<td><em>Agonum</em> abundance</td>
<td>Flowing</td>
<td>48.13</td>
<td>1, 16</td>
<td>0.000</td>
</tr>
<tr>
<td><em>Lachnophorus</em> abundance</td>
<td>Flowing</td>
<td>48.13</td>
<td>1, 16</td>
<td>0.000</td>
</tr>
<tr>
<td><em>Bembidion</em> abundance</td>
<td>Flowing</td>
<td>8.033</td>
<td>1, 16</td>
<td>0.012</td>
</tr>
<tr>
<td><em>Syntomus</em> abundance</td>
<td>Dry</td>
<td>17.418</td>
<td>1, 16</td>
<td>0.001</td>
</tr>
<tr>
<td><em>Chlaenius</em> abundance</td>
<td>Flowing</td>
<td>4.197</td>
<td>1, 16</td>
<td>0.057</td>
</tr>
</tbody>
</table>
TABLE 3. Significant associations between environmental factors and response variables on 25 June 2006. Grey highlighting indicates significance only at $\alpha = 0.1$, while all other reported metrics are significant at $\alpha = 0.05$. For F and df see Tables S4, S7, S9, S10, S12 and S14.

<table>
<thead>
<tr>
<th>Response Metric</th>
<th>Environmental Factor</th>
<th>Relationship direction</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abundance of known predators</td>
<td>Water Resources</td>
<td>Positive</td>
<td>0.074</td>
</tr>
<tr>
<td>Abundance of known predators</td>
<td>Distance to Channel Bank</td>
<td>Negative</td>
<td>0.011</td>
</tr>
<tr>
<td>Families</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community composition</td>
<td>Water Resources</td>
<td>NA</td>
<td>0.020</td>
</tr>
<tr>
<td>Richness</td>
<td>Water Resources</td>
<td>Positive</td>
<td>0.090</td>
</tr>
<tr>
<td>Lycosidae abundance</td>
<td>Distance to Channel Bank</td>
<td>Negative</td>
<td>0.025</td>
</tr>
<tr>
<td>Saldidae abundance</td>
<td>Water Resources</td>
<td>Positive</td>
<td>0.003</td>
</tr>
<tr>
<td>Saldidae abundance</td>
<td>Distance to Channel Bank</td>
<td>Negative</td>
<td>0.005</td>
</tr>
<tr>
<td>Tridactylidae abundance</td>
<td>Water Resources</td>
<td>Positive</td>
<td>0.034</td>
</tr>
<tr>
<td>Tridactylidae abundance</td>
<td>Percent Herbaceous Cover</td>
<td>Negative</td>
<td>0.036</td>
</tr>
<tr>
<td>Tetrigenidae abundance</td>
<td>Water Resources</td>
<td>Positive</td>
<td>0.000</td>
</tr>
<tr>
<td>Tetrigenidae abundance</td>
<td>Distance to Channel Bank</td>
<td>Positive</td>
<td>0.003</td>
</tr>
<tr>
<td>Tetrigenidae abundance</td>
<td>Percent Herbaceous Cover</td>
<td>Negative</td>
<td>0.001</td>
</tr>
<tr>
<td>Tetrigenidae abundance</td>
<td>Presence of Trees</td>
<td>Positive</td>
<td>0.046</td>
</tr>
<tr>
<td>Tetrigenidae abundance</td>
<td>Substrate Complexity</td>
<td>Intermediate</td>
<td>0.020</td>
</tr>
<tr>
<td>Carabid Genera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community composition</td>
<td>Water Resources</td>
<td>NA</td>
<td>0.000</td>
</tr>
<tr>
<td>Community composition</td>
<td>Distance to Channel Bank</td>
<td>NA</td>
<td>0.072</td>
</tr>
<tr>
<td>Community composition</td>
<td>Substrate Complexity</td>
<td>NA</td>
<td>0.002</td>
</tr>
<tr>
<td>Shannon's diversity</td>
<td>Water Resources</td>
<td>Positive</td>
<td>0.000</td>
</tr>
<tr>
<td>Shannon's diversity</td>
<td>Distance to Channel Bank</td>
<td>Negative</td>
<td>0.007</td>
</tr>
<tr>
<td>Richness</td>
<td>Water Resources</td>
<td>Positive</td>
<td>0.000</td>
</tr>
<tr>
<td>Richness</td>
<td>Distance to Channel Bank</td>
<td>Negative</td>
<td>0.000</td>
</tr>
<tr>
<td>Pielou's Evenness</td>
<td>Water Resources</td>
<td>Positive</td>
<td>0.014</td>
</tr>
<tr>
<td><em>Brachinus</em> abundance</td>
<td>Water Resources</td>
<td>Positive</td>
<td>0.004</td>
</tr>
<tr>
<td><em>Brachinus</em> abundance</td>
<td>Distance to Channel Bank</td>
<td>Negative</td>
<td>0.077</td>
</tr>
<tr>
<td><em>Agonum</em> abundance</td>
<td>Water Resources</td>
<td>Positive</td>
<td>0.000</td>
</tr>
<tr>
<td><em>Agonum</em> abundance</td>
<td>Distance to Channel Bank</td>
<td>Negative</td>
<td>0.000</td>
</tr>
<tr>
<td><em>Agonum</em> abundance</td>
<td>Percent Herbaceous Cover</td>
<td>Negative</td>
<td>0.000</td>
</tr>
<tr>
<td><em>Lachnophorus</em> abundance</td>
<td>Water Resources</td>
<td>Positive</td>
<td>0.000</td>
</tr>
<tr>
<td>Species</td>
<td>Resource/Environment</td>
<td>Impact</td>
<td>P-value</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Lachnophorus</td>
<td>Distance to Channel Bank</td>
<td>Negative</td>
<td>0.000</td>
</tr>
<tr>
<td>Lachnophorus</td>
<td>Substratum Complexity</td>
<td>Intermediate</td>
<td>0.095</td>
</tr>
<tr>
<td>Bembidion abundance</td>
<td>Water Resources</td>
<td>Positive</td>
<td>0.006</td>
</tr>
<tr>
<td>Bembidion abundance</td>
<td>Distance to Channel Bank</td>
<td>Negative</td>
<td>0.054</td>
</tr>
<tr>
<td>Syntomus abundance</td>
<td>Water Resources</td>
<td>Negative</td>
<td>0.075</td>
</tr>
<tr>
<td>Chlaenius abundance</td>
<td>Water Resources</td>
<td>Positive</td>
<td>0.001</td>
</tr>
<tr>
<td>Chlaenius abundance</td>
<td>Distance to Channel Bank</td>
<td>Negative</td>
<td>0.000</td>
</tr>
<tr>
<td>Chlaenius abundance</td>
<td>Percent Herbaceous Cover</td>
<td>Negative</td>
<td>0.027</td>
</tr>
<tr>
<td>Schizogenius abundance</td>
<td>Distance to Channel Bank</td>
<td>Negative</td>
<td>0.063</td>
</tr>
<tr>
<td>Schizogenius abundance</td>
<td>Percent Herbaceous Cover</td>
<td>Negative</td>
<td>0.001</td>
</tr>
<tr>
<td>Schizogenius</td>
<td>Presence of Trees</td>
<td>Negative</td>
<td>0.002</td>
</tr>
</tbody>
</table>
Figure Legends

FIG 1. Maps of the region of Southeastern AZ, USA where the study took place and the distribution of sampling sites along the river on the final sampling date. The direction of flow is from south to north. Sampling regions are noted by broader lines following the river course, with narrow solid lines indicating dry sites, broad dashed lines indicating a mix of dry sites, natural pools, and artificial pools, and broad solid lines indicating flowing stream sites. The Sierra Vista metropolitan area, a region of groundwater withdrawal, is just upstream of the sampling locations.
FIG 2. Non-metric multi-dimensional scaling plot of the difference in familial assemblage composition between flowing and dry sites (D = Dry, S = Flowing Stream). Grey text and symbols refer to each family in the analysis. Only families with greater than one individual across all sites are labelled.
Fig 3. Non-metric multi-dimensional scaling plot showing the association between each environmental factor and familial assemblage composition. The rays show the direction and importance of variation of each factor along the first two axes (WaterR = Water Resources, ProxBank = Proximity to the Channel Bank, Pcov = Percent Herbaceous Ground Cover, SubstrScore = Structural Complexity of the Substratum; the variable indicating the presence of trees near the trap is not shown since the labels overlapped with the origin and were uninformative). Grey text and symbols refer to each family in the analysis. See Table S7 for $R^2$ values for each factor. Only families with greater than one individual across all sites are labelled.
FIG 4. Non-metric multi-dimensional scaling plot of the difference in carabid genera assemblage composition between flowing and dry sites (D = Dry, S = Flowing Stream). Grey text refers to each genus in the analysis. Only genera with greater than one individual across all sites are labelled.
Fig 5. Non-metric multi-dimensional scaling plots showing the association between each environmental factor and carabid genera assemblage composition. The rays show the direction and importance of variation of each factor along the first two axes (WaterR = Water Resources, ProxBank = Proximity to the Channel Bank, Pcov = Percent Herbaceous Ground Cover, SubstrScore = Structural Complexity of the Substratum, CWoWNear = Presence of Cottonwood or Willow Trees Near the Trap, with the suffix -Y indicating yes, -N indicating no, and no suffix representing a single site with missing information). Grey text refers to each genus in the analysis. See Table S10 for \( R^2 \) values for each factor. Only families with greater than one individual across all sites are labelled.
8 km
Sierra Vista
800 m
Boquillas
Flow
Tombstone
Dry
Mix
Not sampled
Flowing
Mix
Not sampled
Natural Pools
Natural Pools
Not sampled
Mix
Not sampled
Flowing
Mix
Tombstone
Boquillas
Flow
Sierra Vista
8 km
800 m