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Tracing Water Sources of Terrestrial Animal Populations
with Stable Isotopes: Laboratory Tests with Crickets and
Spiders
Kevin E. McCluney*¤, John L. Sabo

School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America

Abstract

Fluxes of carbon, nitrogen, and water between ecosystem components and organisms have great impacts across levels of
biological organization. Although much progress has been made in tracing carbon and nitrogen, difficulty remains in
tracing water sources from the ecosystem to animals and among animals (the ‘‘water web’’). Naturally occurring, non-
radioactive isotopes of hydrogen and oxygen in water provide a potential method for tracing water sources. However, using
this approach for terrestrial animals is complicated by a change in water isotopes within the body due to differences in
activity of heavy and light isotopes during cuticular and transpiratory water losses. Here we present a technique to use
stable water isotopes to estimate the mean mix of water sources in a population by sampling a group of sympatric animals
over time. Strong correlations between H and O isotopes in the body water of animals collected over time provide linear
patterns of enrichment that can be used to predict a mean mix of water sources useful in standard mixing models to
determine relative source contribution. Multiple temperature and humidity treatment levels do not greatly alter these
relationships, thus having little effect on our ability to estimate this population-level mix of water sources. We show
evidence for the validity of using multiple samples of animal body water, collected across time, to estimate the isotopic mix
of water sources in a population and more accurately trace water sources. The ability to use isotopes to document patterns
of animal water use should be a great asset to biologists globally, especially those studying drylands, droughts, streamside
areas, irrigated landscapes, and the effects of climate change.
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Introduction

Ecologists have long sought to trace fluxes of materials and

energy within and among ecosystems [1,2,3,4]. The magnitudes of

these fluxes are of great importance to studies of biogeochemistry

[5], physiological ecology [6], population fluctuations [7], and

global change [8]. While much progress has been made in

measuring fluxes of energy or nutrients to and between organisms

[6], studies of water webs (as opposed to food webs) [9] are hindered

by a difficulty in measuring the relative use of water sources by

animal populations [10,11]. Drinking behavior is often difficult to

observe and hard to quantify. Similarly, it is difficult to determine

the contribution of consumption of moist food to an animal’s body

water, since there is wide variation in hydration of food [12]. Cost

and time-effective methods of examining water sources for a suite of

animals across space or time are greatly needed.

Stable water isotopes may present one possible method for

tracing water sources from ecosystems to individual animals

[11,13]. Both heavy and light hydrogen (H) and oxygen (O) atoms

occur naturally in all environmental water sources and vary in

relative abundance in these sources due to differences in physical

and chemical activity. For example, during evaporation from a

pool of water, water molecules containing the lighter isotopes (1H

and 16O) evaporate more readily than those containing heavy

isotopes (2H and 18O), leaving a greater ratio of heavy to light

isotopes in the remaining pool (Figure 1) [14,15]. This type of

change in isotope ratio is commonly known as fractionation.

Differences in ratios of water isotopes in various natural water

pools allow for differentiation of sources used by plants. Plant

physiologists and ecologists have made great use of this technique.

For example, Dawson and Ehleringer [16] used natural differences

in isotope ratios of groundwater and surface water, combined with

measurements of xylem water, which does not fractionate, to

determine that adult riparian trees used groundwater instead of

surface water sources. However, all parts of a terrestrial animal are

subject to differential evaporation of molecules containing H and

O isotopes and thus similar methods are not possible for animals.

Sources of water used by animals often have widely separated

isotope ratios. For instance, along the San Pedro River, in

southeastern AZ, the trophic water available in plant leaves can be

,90% d2H greater than river water (d2H is the ratio of 2H/1H

expressed relative to an international standard, VSMOW, which is

artificially referenced as 0% for both H and O isotopes; Text S1;

Figure S1). However, methods for using water isotopes as tracers
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in animals are not well defined [10,13], but this approach is

promising. Wolf et al. [11] examined correlations between d2H of

body water and d13C (13C/12C vs. a standard) of body tissues,

finding that white winged doves (Zenaida asiatica) acquired carbon

and water from cacti, but mourning doves (Zenaida macroura)

obtained only carbon, predominantly receiving their water from

some other source. This study highlighted the potential to use

stable water isotopes as tracers of water consumption and

demonstrated that co-occurring animal species can vary in their

relative use of water sources.

In contrast to the dearth of studies examining the relative

contribution of distinct water sources to the body water of animals,

many studies have investigated correlations between average

isotope ratios of H and O in regional precipitation and that in

various tissues. For instance, Cormie et al. [17] showed that

hydrogen isotope ratios of bone collagen of deer matched the

average local precipitation well. Similarly, Hobson and Wassenaar

[18] found correspondence between hydrogen isotope ratios of

growing season precipitation and feathers of neotropical migrant

songbirds. These correlations between local precipitation and

body tissues have been widely used in studies of animal migration

[19,20]. However, these studies do not trace the relative

contribution of distinctive sources of water to the body water of

animals. Rather, these studies make use of the fact that 1)

hydrogen and oxygen isotopes in water get incorporated into

organic tissues of plants during photosynthesis, so these plant

tissues reflect growing season precipitation [21] and 2) these

organic molecules in plants get transferred up to higher trophic

levels with little fractionation [22]. The body water of animals has

relatively little influence on most of these organic tissues [13].

Thus, the organically bound H and O of animals reflects the

organically bound H and O of plants, which in turn reflects the H

and O isotopes of plant water and thus growing season

precipitation. Thus, in general, organically bound H and O

isotopes in animals serve as relatively good tracers of growing

season precipitation, but as relatively poor tracers of distinct water

sources used by animals. One notable exception is a recent model

for the organically bound H and O isotope ratios of human hair

[23]. However, this method only worked for the particular case of

well-hydrated humans consuming a constant local water source

and consistent homogenous diet across regions. Thus, the

technique is likely to have relatively narrow applicability and will

be unlikely to provide a method of tracing water sources in natural

populations of animals with varying water sources across space or

time and substantial water stress and dehydration. Methods of

using body water isotopes directly to trace water sources in animals

are still needed.

By examining correlations between d2H and d13C, Wolf et al.

[11] managed to circumvent the difficult problem of fractionation

of water isotopes in the body water of doves, providing some of the

first evidence that water isotopes could act as tracers of water

sources in animals. However, fractionation presents an obstacle to

quantifying the relative use of several sources of water by animals,

unless isotopic differences among sources are very large (above the

natural range) [10,11]. The most influential mechanism of animal

water isotope fractionation occurs when water is evaporated from

the body, typically enriching the remaining body water (i.e.,

increasing the d2H or d18O) [24,25], however lesser changes in

body water isotope ratio are also likely to come from metabolically

produced water, synthesis of biochemicals, and exchange of O in

water with O in CO2 [13,23,24,25,26]. Evaporation of water is

influenced by two types of fractionation, equilibrium and kinetic,

which are dependent upon environmental conditions such as

temperature and the vapor pressure gradient (Figure 1). Vapor

pressure, in turn, is influenced by temperature and humidity [27].

Whereas the two types of fractionation may be affected differently

by these environmental factors, over time, in an open system with

unsaturated air, a pool of water will enrich in heavy isotopes

(Figure 1) [14].

McKechnie et al. [10] studied the potential to use 2H as a tracer

of water sources in birds, which would require correction for 2H

fractionation. Rock doves were equilibrated with water with a low

d2H and then switched to water with high d2H, while varying air

temperature and drinking rates via variation in the salt

concentration of the water. Flow-through respirometry was used

to measure the evaporative water loss of birds. Body water

enriched greatly over sources in all birds (+10–50% d2H) and the

amount of enrichment was influenced by drinking rates and

evaporative loss rates. The variability in enrichment caused

McKechnie et al. [10] to conclude that d2H alone could not be

used as a general tracer for water sources in birds, without

explicitly knowing information about rates of water intake and

evaporative water loss for every sample taken (or unless there are

very large differences between water sources: .240% d2H).

Variation in fractionation of d18O, examined alone, may be even

more problematic because of exchanges of O in body water with

O in CO2 dissolved in body water. Therefore, applying isotopes as

natural tracers of water sources in animals requires a different

approach.

Here we describe and test a new method to estimate the mean

mix of water sources in a population of animals, involving

simultaneous measurement of both H and O isotopes in the body

water of this population of animals. Evaporation of water from a

pool leaves the remaining pool water enriched in both 18O and 2H

(Figure 1). Because of relative differences in bond strength between

H and O isotopes and thus differences in the activity of water

molecules containing 2H vs 18O, enrichment of 2H occurs more

quickly than 18O (producing a deuterium-excess) and results in

characteristic lines of evaporation on a plot of d18O vs. d2H

(Figure 1) [14]. Further, differences in humidity primarily

influence the slope of the line, not the intercept of the line with

the original pool of water (Figure 1) [27]. This difference in activity

Figure 1. Enrichment over time from a pool of water. The
original pool of water falls along the global meteoric water line (GMWL),
the line representing isotope ratios of all precipitation globally. This
pool then enriches in heavy isotopes over time because of higher
evaporation of lighter isotopes. The rate of evaporation is influences by
temperature and humidity, as is the slope of the line.
doi:10.1371/journal.pone.0015696.g001

Tracing Water Sources with Stable Isotopes
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of the molecules is responsible for producing the global meteoric

water line, a line of covariation between H and O isotope ratios that

characterizes the isotope ratios of precipitation globally (Figure 1)

[28]. The covariation in isotopes during evaporation from a pool

also characterizes leaf water during transpiration [29,30]. There-

fore, we hypothesize that animal body water shows a similar pattern

of enrichment. Isotope ratios of d18O and d2H within a population

of animals should strongly covary and the isotopic distance between

an animal’s current body water and the unenriched mix of sources

should be primarily determined by the relative time since source

consumption (or dehydration of the individual). Humidity and

temperature should only influence the slope of the line, not the

intersection with the original mix of sources.

We test our hypothesis in a laboratory environment, by

providing house crickets (Acheta domesticus) with water of a known

isotope ratio, removing this water source, and collecting

individuals over time. We perform these tests at three different

temperatures (15uC, 25uC, and 35uC), with uncontrolled, variable,

but high humidity (Table S2). At one temperature (25uC), we

compare these results to results of a similar experiment in which

humidity was held relatively constant and low (Table S2). We

predict that lines of isotopic enrichment will be formed for each

experimental run, with lines of best fit from linear regression

passing through the source water. We predict that alteration of

temperature and humidity will not alter the intersection of this line

with the source water, although changes in slope of the line may

occur (as with evaporation of a pool of water).

If validated, our technique should allow estimation of the

average unenriched isotopic ratio in the average field animal (the

mean isotopic mix in the population) when samples of co-

occurring animals are collected across time. This estimation would

allow the use of standard mixing models [6] to determine the

relative contribution of multiple water sources to the body water of

a group of animals. We also discuss results from a third

experiment, in which field crickets (Gryllus alogus) and wolf spiders

(Hogna antelucana) were switched from a depleted water source to an

enriched water source under several controlled temperatures and

humidities, but without controlling the mix of the two sources.

Thus, we show an example of how our technique could be

employed to calculate the relative contribution of these two water

sources to a population of animals, but do not fully test the

technique for multi-source scenarios.

Materials and Methods

Study Species
Single-source experiments used adult female house crickets

(Acheta domesticus) of approximately the same age, obtained from a

local pet store. The two-source experiment used lab-reared adult

female damp-loving field crickets (Gryllus alogus), which are a

southwestern US riparian specialist, and also used field-collected

wolf spiders, Hogna antelucana, which are widely distributed in

North America. G. alogus can be found in high density in litter

dominated understory along the San Pedro River in southeastern

Arizona [31]. Several studies have recently documented the ability

of this species to obtain sufficient water for survival solely from

greenfall (freshly fallen moist green leaves) [9,31]. However the

extent to which the species rely on other environmental sources of

water, such as water from the saturated soil zone near the river,

remains unknown (Text S1; Figure S1).

Large wolf spiders (Hogna antelucana and others) actively hunt G.

alogus at night [9]. Recently, it has been documented that H.

antelucana greatly alter their rates of consumption of G. alogus based

on free water availability [9]. However, it is unknown to what

extent H. antelucana rely on G. alogus for water, versus other

environmental sources, such as river water from the saturated soil

zone near the river (Text S1; Figure S1).

Methods for the single-source, temperature alteration
experiment

Adult female house crickets (A. domesticus) were separated into six

cages (56640630 cm) with unventilated plastic lids, each

containing approximately 23 crickets. Cages were housed in an

environmental chamber set to 15uC, 25uC, or 35uC (depending on

treatment) and a 14:10 light:dark cycle. These temperatures are

characteristic of environmental temperatures experienced by G.

alogus along the San Pedro river in June [31,32]. Humidities and

temperatures inside each cage were recorded at every sampling

using a weather station probe (THGR122N, Oregon Scientific,

61% RH, 60.1uC; actual values reported in Table S2). Crickets

were provided with deionized water and dry food (Teklad rodent

diet 8604, Harlan, www.harlan.com) ad libitum as well as an egg

crate for 24 hours prior to water removal. During this period,

water was changed every 6 hours to reduce isotopic variation in

the source water. After 24 hours, water was removed, unventilated

lids were replaced with ventilated lids with mesh screen, and a

glass jar of anhydrous calcium sulfate (DrieriteH, W.A. Hammond

Drierite Company LTD, www.drierite.com) was added to each

cage to reduce humidity and speed dehydration of the crickets.

Samples of water were collected from the initial source and

directly before water removal to obtain the range of possible isotopic

ratios in the source water. Samples of crickets were collected directly

before water removal (time 0) and 1.5, 3, 6, 12, 24, and 36 hours

after water removal. One cricket was collected from each of the six

cages for isotopic determination and two crickets were collected

from each cage for careful gravimetric hydration measurement. All

of the crickets collected for hydration were weighed before and after

drying using a 5-place scale (XP205, Mettler Toledo balance with a

readability of 60.00001 g, www.mt.com). Gloves were worn

throughout weighing procedures. Crickets used for hydration

determination were dried at 50uC for 48 hours.

Methods for the single-source controlled low humidity
experiment

Adult female house crickets were housed for several days in an

environmental chamber equipped with a space heater with a digital

thermostat set to 30uC and lights set to a 14:10 L:D cycle. Crickets were

kept in plastic containers with deionized water and food ad libitum as

described in the single-source, temperature alteration experiment.

For this experiment, animals were then placed in individual

cylindrical cages formed from chicken wire and aluminum screen,

which were placed within a stainless steel chamber, all housed

Table 1. Dates when each combination of temperature and
humidity were tested for the two-source experiment on field
crickets in 2009.

Absolute Humidity (g/m3)

3 6 9 12

15 10/23 9/4

Temperature (6C) 25 9/24 9/14 9/18 10/8

35 11/2 9/11

Spiders were tested only at 25uC and 6 g/m3 on 11/18.
doi:10.1371/journal.pone.0015696.t001

Tracing Water Sources with Stable Isotopes
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within a functioning environmental chamber (Text S1; Figure S2).

The temperature was set to 25uC. Vapor density of influent air was

maintained at approximately 3 g water/m3 air, by mixing variable

amounts of compressed air that had been either dried or vapor-

saturated. Air was dried using anhydrous calcium sulfate

(DrieriteH, W.A. Hammond Drierite Company LTD, www.

drierite.com) or saturated by bubbling water through a heated

deionized water column and mixing was accomplished using

calibrated flow rotameters (Omega Model FL-3840G). The

influent air flow rate was maintained at approximately 8.5 L/

min. Temperature was measured by thermocouple (Type T

copper and constantan wire with DiGi-Sense type T thermocouple

meter, Omega Engineering, Inc., Stamford, CT) and vapor

density was measured using a saturation-calibrated dewpoint

hygrometer (911 Dew AllTM, EG&G, 63.0uC dewpoint).

Measured values were slightly different than intended settings

(measured values are reported in Table S2).

Experimental runs began with 12 hours of acclimation to

experimental conditions without food or water. At the end of this

period, samples were collected and deionized water (the same

as during rearing) was added to cages for one hour. Water was

added via insertion of continuously flowing miniature water

fountains through the base of the stainless steel chamber (Text

S1; Figure S2). Samples of water and animals were taken before

water fountains were added. After one hour of water, additional

samples of animals and water were taken and water was

removed. Additional samples of animals were taken 1.5, 3, 6,

12, and 24 hours post water removal. The timeline of events

was similar to that of the two-source experiment, shown in

Table S1.

Methods for the two-source example experiment
This experiment was conducted in the same manner as the

single-source, controlled low humidity experiment, except as noted

below (Text S1; Table S1; Table S2). First, this experiment used

field crickets, G. alogus, which were collected along the San Pedro

River, reared to adulthood and bred in the lab. Moistened soil was

provided for breeding. Thus, all crickets used in this experiment

Table 2. Regression statistics for each run from the single-source experiments.

15uC, variable humidity

Adjusted R2: 0.74

Source Df Sum Sq Mean Sq F value p

Model 1 1241.2 1241.2 118.90 0.000

Residuals 40 417.6 10.4

Coefficients Estimate Std. Error t value p

(Intercept) 223.63 0.79 229.88 0.000

Slope 4.27 0.39 10.90 0.000

25uC, variable humidity

Adjusted R2: 0.85

Source Df Sum Sq Mean Sq F value p

Model 1 1618.7 1618.7 235.71 0.000

Residuals 40 274.7 6.9

Coefficients Estimate Std. Error t value p

(Intercept) 221.60 0.40 253.39 0.000

Slope 4.94 0.32 15.35 0.000

35uC, variable humidity

Adjusted R2: 0.79

Source Df Sum Sq Mean Sq F value p

Model 1 1535.2 1535.2 159.07 0.000

Residuals 40 386.1 9.7

Coefficients Estimate Std. Error t value p

(Intercept) 220.96 0.95 221.95 0.000

Slope 3.82 0.30 12.61 0.000

25uC, 3g water/m3 air

Adjusted R2: 0.84

Source Df Sum Sq Mean Sq F value p

Model 1 5282.1 5282.1 188.76 0.000

Residuals 36 1007.4 28

Coefficients Estimate Std. Error t value p

(Intercept) 219.05 1.05 218.09 0.000

Slope 5.76 0.42 13.74 0.000

In each case, d2H is the response variable and d18O is the predictor.
doi:10.1371/journal.pone.0015696.t002

Tracing Water Sources with Stable Isotopes
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were reared under identical conditions from egg to adulthood.

Only adult female G. alogus, which do not fly or stridulate (‘‘call’’),

were used in experiments in order to reduce the potential influence

of metabolically produced water. Spiders (H. antelucana) were also

field captured from the same location and allowed to acclimate to

the conditions of the rearing environmental chamber for at least 2

weeks. During this time they were given water ad libitum and fed

one house cricket per week, (approximately 8–12 mm total in

length). Spiders used in these experiments were maintained under

these conditions for 3 weeks to 5 months.

Experimental runs were carried out on crickets at several

combinations of temperature and humidity (Table 1), representa-

tive of field conditions along the San Pedro River in May and June

[31,32]. Each combination was examined in a separate experi-

mental run with run order assigned using a modified random

approach. This design was used to maximize possible interpreta-

tions in the shortest time range between runs, minimizing potential

effects of changes in the source population or of population

failures.

Each run occurred similarly to the single-source controlled low

humidity experiment. As with that experiment, animals in this

experiment received deionized tap water during rearing. But here,

animals were switched to enriched water (by approximately 60%
d2H) for the one hour of water delivery via cricket water fountains.

After this hour, cages were dried and replaced (Table S1). In this

experiment, in addition to the thermocouple and dewpoint

hygrometer used in the single-source controlled low humidity

experiment, we also measured the temperatures and humidities of

influent air using a weather station probe (THGR122N, Oregon

Scientific, 61% RH, 60.1uC). Again, actual measurements of

temperature and humidity are reported in Table S2. In all other

ways, this experiment and the single-source controlled low

humidity experiment were identical.

Isotopic processing and measurement
For all experiments, samples of animals were collected in a

random order, sealed in airtight vials, and frozen. Water was

extracted from samples via cryogenic vacuum distillation [33],

with addition of activated charcoal to remove abundant volatile

organic compounds and subsequent filtering to remove particu-

lates. Samples were then flame-sealed in glass capillary tubes until

isotope analysis, which was conducted using a liquid water isotope

analyzer with a PALS autosampler (DLT-100, Los Gatos

Research, Inc; precision of ,0.2% d18O and ,0.5% d2H), with

every two unknown samples bracketed by one of two known

working standard (Los Gatos Research, Inc, standards #3 and

#5) and with the first three injections discarded to reduce isotopic

carryover. The validity of these methods has been verified through

repeated testing (Text S1; Figure S3; Table S3). Isotope analyses of

the samples from the single-source, controlled humidity experi-

ment were conducted following similar, validated, techniques at

the Colorado Plateau Stable Isotope Laboratory at Northern

Arizona University.

Statistical analysis
We employed several methods to test our hypothesis and

conducted all analyses in R v2.9.0 (Text S1). Our first approach

sought to examine if regression lines through isotope ratios of all

Figure 2. The isotope ratios of the three runs from the single-source temperature alteration experiment. All three runs experienced
similar experimental conditions, with relatively high, but variable humidity (Table S2). These lines display strong and statistically significant
correlations (Table 2). There are no statistical differences between the estimates of the water sources and the estimates of each run (Table 3). While
there is an overall difference in slope and intercepts between all lines from the single-source experiments (Table 4), there are no statistically
significant differences between any two lines (Table 5). Note: not all details are visible (e.g. the lower prediction limit for the 35uC crickets is hidden by
the fitted line for the 25uC crickets).
doi:10.1371/journal.pone.0015696.g002

Tracing Water Sources with Stable Isotopes
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collected crickets from each treatment level passed through source

values. For both of the single-source experiments, we calculated

simple linear regressions for each group of crickets and mean values

for sources. Next we calculated the distance between the regression

line and the point representing the source mean. We then broadened

this approach to include 95% prediction intervals of the regression

line and confidence intervals of the source, testing if there was a

statistically significant difference between the cricket line and the

source. Next we used ANCOVA to test for significant differences

between slopes and elevations of the regression lines for each

combination of temperature (15uC, 25uC, or 35uC) and humidity

(variable and high vs. constant at 3 g/m3), followed by post-hoc

comparisons between each line using Tukey’s HSD, following Zar

[34]. Since each sample we collected represents a separate

individual, data were independent. Normality, equal variance, and

linearity assumptions of ANCOVA were assessed visually using

plotting tools in R v2.9.0. These assumptions were met.

For all three experiments, we examined if time since water

removal had a significant effect on isotope ratios using MANOVA,

with d2H and d18O isotopes as responses and time as the predictor,

with a block representing each experimental run. To see if

hydration differences might be a potential cause of any observed

variation between water isotope ratios of crickets and time, we

examined Spearman correlations between time and hydration of

the crickets collected solely for this purpose from the single-source

temperature alteration experiment. We could not directly test if

hydration influenced water isotope ratios of crickets due to the

losses of volatile organics during the water extraction procedure

used in determining isotope ratios.

For the two-source experiment, we calculated a regression line

between water isotopic measurements of crickets and another

between the depleted water source available during rearing and

the enriched water provided during the experiment. We then

calculated the intersection of these two lines. We also calculated

the intersections of the prediction intervals of the cricket line with

the water source line. We used these intersection points in simple

mixing models using H isotopes. The intersection of the mean

regression lines represent the mean mix of sources for the entire

population of crickets. The upper and lower 95% confidence levels

represent the variability in the mix of sources within individual

crickets, but do not indicate the error in the estimate of the

population mean (Figure S4). Our current best estimate of the

error in the population mean is based on the distance between the

regression line and sources from the single-source experiments.

Results

For both of the single source experiments, isotope ratios of

crickets were strongly positively correlated, forming regression

lines on dual isotope plots (Table 2; Figure 2; Figure 3). We found

a close match between fitted cricket regression lines in both single-

source experiments and the mean value of sources, with distances

between these lines and sources differing by less than two parts per

mil (Figure 2; Figure 3; Table 3). Additionally, there were no

statistically significant differences between the estimates of the

source water and the estimates of the cricket regression lines (as

determined by overlapping confidence and prediction intervals;

Figure 2; Figure 3; Table 3). Using ANCOVA, we found

Figure 3. The isotope ratios of runs at 256C from the single-source experiments. These two runs differ in humidity and experimental set-
up, but not temperature. The temperature alteration experiment had relatively high, but variable humidity, whereas the controlled low humidity
experiment had low and constant humidity (Table S2). These lines display strong and statistically significant correlations (Table 2). There are no
statistical differences between the estimates of the water sources and the estimates of each run (Table 3). While there is an overall difference in slope
and intercepts of all lines from the single-source experiments (Table 4), there are no statistically significant differences between these two lines
(Table 5).
doi:10.1371/journal.pone.0015696.g003
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significant overall differences in the slopes of the four cricket

regression lines from the single-source experiments (F3,156 = 6.66,

p = 0.000; Table 4). However, post-hoc Tukey’s comparisons did

not show that any two of the slopes were significantly different

from one another (Table 5).

Across all experiments, we found significant variation between

isotope ratios and time since water removal (MANOVA,

Pillai = 0.014, F1,317 = 2.3, p = 0.1; Table 6). However, the

single-source temperature alteration experiment revealed a lack

of statistical correlation between cricket hydration and time since

water removal (S = 2870355, n = 252, r = 20.08, p = 0.228). A

graph shows that dehydrated crickets were present at the

beginning and end of each experimental run (Figure 4).

Following the proposed methods discussed above, in the two-

source experiment we found intersection lines between the two-

source water regression lines and the animal regression lines

Table 3. Comparison of the fitted values and upper and lower prediction levels of the d2H of the cricket regression line with the
values of the water source at the mean values and upper and lower confidence levels of d18O of the source (CL = confidence limit,
PL = prediction limit).

156C, variable humidity

source d18O source d2H cricket d2H sig

lower CL mean upper CL lower PL mean upper PL

source d18O upper CL 27.08 259.49 257.87 256.25 263.36 253.85 244.34 NS

mean 27.43 259.49 257.87 256.25 265.09 255.37 245.66 NS

lower CL 27.79 259.49 257.87 256.25 266.82 256.90 246.97 NS

Distance between the mean water source and fitted values of the cricket regression line: 0.57

256C, variable humidity

source d18O source d2H cricket d2H sig

lower CL mean upper CL lower PL mean upper PL

upper CL 27.53 259.35 258.52 257.68 266.03 258.78 251.54 NS

mean 27.74 259.35 258.52 257.68 267.15 259.81 252.48 NS

lower CL 27.94 259.35 258.52 257.68 268.27 260.84 253.41 NS

Distance between the mean water source and fitted values of the cricket regression line: 0.26

356C, variable humidity

source d18O source d2H cricket d2H

lower CL mean upper CL lower PL mean upper PL sig

source d18O upper CL 26.96 258.15 256.63 255.11 256.24 247.55 238.86 NS

mean 27.30 258.15 256.63 255.11 257.70 248.86 240.03 NS

lower CL 27.64 258.15 256.63 255.11 259.16 250.18 241.20 NS

Distance between the mean water source and fitted values of the cricket regression line: 1.97

256C, 3g water/m3 air

source d18O source d2H cricket d2H sig

lower CL mean upper CL lower PL mean upper PL

source d18O upper CL 27.03 259.62 258.71 257.81 271.43 259.57 247.71 NS

mean 27.32 259.62 258.71 257.81 273.23 261.27 249.31 NS

lower CL 27.62 259.62 258.71 257.81 275.05 262.98 250.91 NS

Distance between the mean water source and fitted values of the cricket regression line: 0.44

Prediction intervals of the cricket line that encompass the confidence intervals of the water source indicate a lack of statistical difference between the prediction of the
cricket line and the estimate of the mean of the source (NS = not significant). Also included is the distance between the mean isotopic value of the water source and the
fitted cricket regression line.
All values are %.
doi:10.1371/journal.pone.0015696.t003

Table 4. ANCOVA tables testing for differences in slopes and
intercepts between regression lines through isotopic ratios of
each run in both the single-source experiments combined.

Source Df Sum Sq Mean Sq F value p

delta18O 1 15362.8 15362.8 1149.07 0.000

run (intercepts) 3 264.4 88.1 6.59 0.000

delta18O:run (slopes) 3 267.2 89.1 6.66 0.000

residuals 156 2085.7 13.4

Overall, both slopes and intercepts differ between the 4 lines.
doi:10.1371/journal.pone.0015696.t004
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representing a mean mix of sources across all runs of 50.8%

(64.45% SE) depleted water (as opposed to enriched water;

Table 7). We highlight two runs of this experiment for example

purposes. First, field crickets (G. alogus) at 25uC and 6 g/m3

humidity were calculated to have obtained a mean of 50.9% of

their body water from depleted water, with individuals varying

from 21.0% to 85.4%, based on confidence intervals (Table 7;

Figure 5A). Second, spiders (H. antelucana) at 25uC and 6 g/m3

humidity were calculated to have obtained a mean of 53.8% of

their body water from depleted water, with individuals varying

from 39.0% to 68.6%, based on confidence intervals (Table 7;

Figure 5B). If we use the maximum distance between the

regression line and sources from the single-source experiments of

2 parts per mil (Table 3) as an estimate of error in the mean mix of

sources in the two-source experiments, it would indicate an error

of approximately 63% for the mean mix of sources in the

population, in this experiment.

Discussion

Animal ecologists have struggled to trace important fluxes of

water between sources and consumers [10]. Our results suggest

Table 5. Post-hoc Tukey’s HSD comparisons of differences
between regression lines in each run, following ANCOVA (see
Table 4).

Comparison df q p

25uC, variable humidity vs 25uC, 3g/m3 76 1.35 0.225

15uC, variable humidity vs 25uC, variable humidity 80 1.32 0.212

15uC, variable humidity vs 35uC, variable humidity 80 0.91 0.082

25uC, variable humidity vs 35uC, variable humidity 80 2.48 0.696

15uC, variable humidity vs 25uC, 3g/m3 76 2.35 0.650

35uC, variable humidity vs 25uC, 3g/m3 76 3.56 0.935

doi:10.1371/journal.pone.0015696.t005

Table 6. MANOVA table testing for differences in the isotope
ratios of animals across collection times, including results
from all 3 experiments.

Source Df Pillai approx F num Df den Df p

Time 1 0.018 3.284 2 358 0.039

Run 1 0.196 43.593 2 358 0.000

Residuals 359

Significant differences were detected across collection times. However, in the
single-source temperature alteration experiment, hydration was not correlated
with time (S = 2870355, n = 252, r = 20.08, p = 0.228).
doi:10.1371/journal.pone.0015696.t006

Figure 4. Hydration of crickets collected at each time in the single-source temperature alteration experiment. There is no significant
correlation between time since water removal and hydration.
doi:10.1371/journal.pone.0015696.g004
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that water isotopes can be used as population-level tracers of

animal water sources at natural abundance using the technique

discussed here. Strong covariation between H and O isotope ratios

of animals in the single-source experiments created regression lines

that extended backwards through isotopic water sources, or very

close to these sources, despite differences in temperature and

humidity. Thus, if one collects body water samples from sympatric

individual animals of a certain species, varying in time since

consuming a similar distribution of water resources, the approx-

imate mean mix of sources for the population should fall along a

regression through the points of their d18O and d2H. Additionally,

we speculate that the population-wide regression line could act as

an integrative measure of the evaporative enrichment of the local

environment and that the slope of the population-wide regression

line could potentially be used to correct for the isotopic

enrichment of individuals, allowing for estimation of the mix of

sources for individual animals. However, this speculation requires

testing.

Significant differences in slopes of regression lines in the single-

source experiments provide some evidence of slight changes in

fractionation associated with shifts in environmental temperature

or humidity. However, we were unable to find differences between

any two slopes in post-hoc comparisons. Additionally, overall

differences in slope did not cause a significant difference between

the predicted regression line and the values of the source (Table 3;

Figure 2; Figure 3). Thus, relatively high statistical power in this

experiment provided statistically significant overall differences

between slopes across a shift of 20uC and considerable range in

humidity, but absolute differences in slope were relatively small,

having little to no effect on the validity of the technique we

employed (Table 3; Figure 2; Figure 3). Even though individual

animals may vary greatly in their actual enrichment, co-occurring

animals of a given species are likely to experience a similar regime

of factors influencing fractionation. This fractionation produces

characteristic covariation between enrichment of 2H and 18O,

which describes a line passing through or near the average value

for the mix of sources for the population (Figure S5). Thus, such

lines integrate all fractionation factors and allow for correction,

without needing time series of information on temperature and

humidity for each individual animal. In other words, instead of

trying to determine specific values for fractionation factors, the

regression techniques shown here allow for an integrated method

of correcting for fractionation at the population-level that does not

rely on knowing values for specific fractionation factors for

individual animals. However, further investigation of the influence

of temperature and humidity on the slopes and intercepts of these

regression lines could be useful to verify the results presented here.

Whereas evidence for the validity of our technique appears

strong, the mechanistic basis for the lines produced by animals

collected in these experiments is less clear. While we found the

expected significant effect of time since water removal on the

isotope ratios of these crickets, we did not find a significant

correlation between cricket hydration and time since water

removal. There was a lack of change in the hydration of these

crickets over time, with some crickets at the initial collection of the

single-source temperature alteration experiment just as dehydrated

as at the final collection. Additional experimentation is needed

Table 7. Population mean percentage of body water
obtained from the depleted water source in the two-source
experiment, and lower and upper estimates of the range for
individual crickets, from mixing models based on mean values
of sources and intersection points between source regression
lines and animal regression lines.

Type

Temperature

(6C)
Humidity
(g/m3) Mean Lower Upper

Cr 15 3 61.0% 1.7% 100.0%

Cr 15 6 49.9% 12.3% 86.8%

Cr 25 3 20.5% 0.0% 50.7%

Cr 25 6 50.9% 21.0% 85.4%

Cr 25 9 62.8% 18.0% 100.0%

Cr 25 12 59.4% 11.7% 100.0%

Cr 35 3 58.7% 11.5% 100.0%

Cr 35 6 39.9% 10.2% 72.2%

Sp 25 6 53.8% 39.0% 68.6%

mean 50.8% 13.9% 84.9%

SE 4.5% 3.9% 5.9%

Lower and upper values are based on intersections of water regression line and
the animal regression line prediction intervals. The italicized rows are discussed
as examples in the text and graphed in Figure 5. Cr = field cricket (G. alogus),
Sp = wolf spider (H. antelucana).
doi:10.1371/journal.pone.0015696.t007

Figure 5. Example determinations of the mean contribution of de-ionized water to body water with two sources. Panel A shows field
crickets (G. alogus) and panel B shows wolf spiders (H. antelucana), both at 25uC and 6 g/m3 humidity, from the two-source experiment. See Table 7
for mixing model calculations of the percentage contribution of each water source.
doi:10.1371/journal.pone.0015696.g005
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with more successful manipulation of cricket hydration. However,

we note that none of the animals collected had isotope ratios very

near that of the source, showing a large gap between the sources

and the least enriched individual. We hypothesize that this is due

to a ‘‘moving target’’ effect (Figure S5). This effect occurs because

any individual animal is constantly enriching. When an animal

consumes a new water source, it is adding a relatively small

amount of the source water to a relatively large amount of

enriched body water. Thus, the body water isotope ratio of each

animal will move up and down near the enrichment line over time

and will never approach the source values very closely. More

testing of this mechanistic hypothesis is needed to achieve better

confidence in the universality of the use of the described technique

of correcting for enrichment.

Our analyses of two-source systems outlines the manner in

which our techniques of correction for enrichment would allow

determination of the relative contribution of sources to a

population of animals under more realistic field conditions. Our

experiment does not provide a direct test for this method in two-

source systems, since the actual mix was unknown. Additionally,

the estimate of the mean mix of sources for the population has no

estimate of associated error. Further, repeated testing under

conditions where the mean mix of sources for the population is

controlled are needed in order to fully verify this technique and

estimate the error in the population mean mix of sources. The

confidence intervals provided by the intersection of the animal

prediction lines with the water regression line estimate the

variability the mix of sources within individual crickets within

the population (Figure S4). We do suggest however, that until

controlled two-source experiments are conducted, our single-

source experiments provide some expectation of error for these

methods. Since the distances between the single-source regression

lines and the known sources were below 2% (and as low as

0.26%), one would expect the error to be quite low in two-source

scenarios. In our particular case, we calculated an error of less

than 63% in the calculation of mix of sources in the two-source

experiments, based on the distances from the single source

experiments. However, to verify this low error rate for multi-

source scenarios, additional experiments are needed.

Our examination suggests that there are several factors that will

influence precise estimates of the mix of sources: 1) the number of

samples collected and 2) the perpendicularity of the water and

animal regression lines. More sample collection should increase the

statistical power and provide better estimates of this line.

Additionally, no intersections would occur in situations where the

animal regression line and the water line are parallel, invalidating the

technique, so some difference in slope of these two lines is necessary.

The proximity of the isotope ratio of the least enriched animals to the

mix of sources and consequently, the turnover rate of body water will

slightly influence the estimate of the variation in the mix of sources in

individuals within the population. The closer the least-enriched

animals are to the mix of sources, the narrower the prediction

intervals will be at the points of intersection with the water line.

Perpendicularity of the two lines may also influence estimates of this

variation, since the more orthogonal the lines are, the narrower the

range between the intersection of the upper and lower prediction

limits of the animal regression line with the water line.

Whereas further testing is needed, our results present encour-

aging evidence that one can use natural abundances of stable

isotopes to trace water sources in animal populations, after

correcting for isotope fractionation using lines of regression on

animals collected over time. This technique should be widely

applicable. The spatial extent of dry lands is over M of the earth’s

land mass [35] and global climate change is expected to increase

the variability of precipitation, with more intense storms and

droughts a likely consequence [36]. Additionally, even though

water limitation may not occur in all ecosystems at all times, recent

evidence suggests that water may be limiting in all ecosystems,

even rainforests, at some time, in some years [37] and that this

variability in water availability may influence physiology, behav-

ior, species interactions, and diversity [9,31,38,39,40]. Thus, it is

exceedingly important that ecologists, resource managers, and the

public understand the potential impacts of changing water

availability and declining surface waters. The methods developed

here should provide tools to examine patterns of water use in an

ecological community and help to predict the potential impacts of

changes in water resources.

Supporting Information

Text S1 Additional methodological details and support-
ing isotope values from field collections.

(DOC)

Figure S1 Results from field collections of sources,
crickets, and spiders. Proximal samples are those collected

within 10 m of the flowing river and distal samples were collected

greater than 50 m from the flowing river.

(JPG)

Figure S2 Experimental apparatus design for the sin-
gle-source controlled low humidity experiment and the
two-source experiment. Panel A shows a top view, panel B

shows a side view, and panel C shows a close-up of a miniature

water fountain.

(TIF)

Figure S3 Effects of different amounts of activated
charcoal addition on the isotope ratio of extracted
crickets. Even a small amount of charcoal reduces the influence

of volatile organic compounds on isotope ratios.

(TIF)

Figure S4 Comparison of two hypothetical animal
populations in a two-source system. In both cases, the

mean mix for the population is 50% of each source. However, the

left panel shows a population experiencing lower inter-individual

variability in source use and the right panel shows high.

(TIF)

Figure S5 Hypothetical graph of the factors influencing
the isotope ratio of individual animals, displayed as
vectors. Black arrows indicate the relative magnitude of influence

of each driver of the isotope ratio of body water of individuals.

(TIF)

Table S1 Timeline of activities for each run of the two-
source experiment.

(DOC)

Table S2 Planned vs. actual temperature and humidity
for each run of each experiment.

(DOC)

Table S3 Results of tests of extraction and processing of
water samples for isotope analysis. Raw data are
reported for each category of sampling.

(DOC)
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