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Riverine ecosystems are some of the most diverse on
Earth and provide important services (Palmer and

Richardson 2009; Strayer and Dudgeon 2010). Under-
standing how they function is critical to sustainable manage-
ment but challenging given their complex spatial and tem-
poral structure and multi-scale processes. Riverine systems
comprise hydrological–ecological networks organized by the
flow of water, sediment, nutrients, and organisms downhill

and downstream and the active movement of animals uphill
and upstream. Rivers are multidimensional, including longi-
tudinal (upstream–downstream), lateral (upland to chan-
nel), vertical (hyporheic, or the zone below the stream bed),
and temporal components (Ward 1989; Fausch et al. 2002).
Despite this multidimensionality, many ecological processes
are influenced by the rapid flow of water downhill, providing
strong directional connectivity (Wiens 2002). Rivers are
also organized hierarchically, with fine-scale structures (eg
gravel patches) embedded within channel bed features (eg
riffles), which in turn are embedded within reaches, valley
segments, basins, and regions (Table 1; Frissell et al. 1986;
Thorp et al. 2008). Uplands are fundamental to riverine
organization, with variations in land use, land cover, and
soils influencing surface-water and groundwater flow paths,
thereby altering water, nutrient, and sediment fluxes to
rivers (eg Lewis and Grimm 2007). Rivers are also tempo-
rally variable, partially due to hydrology that varies within
and across basins and climatic regions (Poff et al. 1997).
Thus, we define riverine macrosystems as hierarchical
dynamic networks, influenced by strong directional connec-
tivity that integrates processes across multiple scales and
broad distances through time (Figure 1; see Heffernan et al.
[2014] for macrosystem definition).

Ecologists have typically studied riverine ecosystems at the
scale of bed features or reaches distributed longitudinally
along rivers of varying size, in an attempt to understand the
strong influences that upstream and watershed processes,
including human modifications, can have (Poole 2010).
Our conceptualization of rivers and watersheds as “macrosys-
tems” is a logical extension of these approaches (Figure 1).
We view riverine macrosystems as repeating, interacting
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habitat patches, distributed throughout watersheds and
along hydrologic flow paths. Moreover, ecological responses
of whole basins reflect cumulative and emergent properties
and processes operating across scales, including basin-level
variation in climate that interacts with human activities,
modifying hydrology, connectivity, and watershed processes
(Figure 1). Thus, macrosystems have important “cross-scale
interactions” (Soranno et al. 2014) and teleconnections
(ie “strong links between distant and otherwise dis-
connected regions” sensu Heffernan et al. 2014). 

Although the study of riverine macrosystems focuses on
large ecological networks, consideration of regional context
can provide information on local dynamics. For example,
by considering differences in runoff amounts across the cen-
tral US and variations in dispersal distance, Muneepeerakul
et al. (2008) were able to predict fish diversity in sub-basins
of the Mississippi River. In general, riverine macrosystems
ecology may improve riverine management by: (1) consid-
ering interactions between patterns and processes across
scales that can lead to nonlinear system shifts, such as how
regional climate interacts with localized human alterations
(eg urbanization); or (2) explicitly focusing on interactive
effects of multiple spatially structured human alterations (eg
dams, agriculture) on basin-wide conditions (Figure 1).

Riverine networks can contribute to a broader under-

standing of macrosystems in general. Owing to their
directional connectivity, rivers are more likely to be
affected by macroscale phenomena than many other
ecosystems. However, this connectivity makes such sys-
tems tractable to macroscale study because we know
where to look for teleconnections.

The framework we present for understanding riverine
macrosystems builds on a history of river science that rec-
ognizes the interconnected and variable nature of rivers
and incorporates several well-developed research themes
(Townsend 1989; Fausch et al. 2002; Ward et al. 2002;
Wiens 2002; Benda et al. 2004; Thorp et al. 2008; Poole
2010). Here, we discuss: (1) advances in theory and tech-
niques for studying whole watersheds, (2) emergent prop-
erties of riverine macrosystems, (3) measurement of
changes in macrosystem condition, (4) potential effects of
multiple human alterations on entire river systems, includ-
ing ecological thresholds, and (5) research challenges for
riverine macrosystem ecology and management.

n Advances in theory and techniques for studying
whole watersheds

In keeping with previous research (see Poole [2010] for
review), we view large river systems as a series of con-

Table 1. Examples of questions, hypotheses, and study approaches appropriate for each spatial scale; patterns and
processes interact across scales and can lead to ecological thresholds or tipping points

Scale Questions Hypotheses Study approaches Patch grain sizes

Micro- (1) What are the (1) Weather events (1) Manipulative Microhabitat 100 m2 – 
(Microhabitat 100 m2 mechanistic drivers of (2) Variation in experiments pool/riffle 101 m2

– reach 104 m2) individual components of biophysical filters (2) Gradient analysis
ecological condition (3) Simple quantitative
at a site? models

(2) What are the mechanistic
drivers of species behavior, 
interactions, and demo-
graphics at a site?

Meso- (1) What determines eco- (1) Weather patterns (1) Gradient analysis Reach 104 m2 – 
(Reach 104 m2 – logical condition within (2) Connectivity and (2) Correlative niche valley segment 105 m2

basin 109 m2) a region? dispersal models
(2) How do species of con- (3) Average effects of (3) Theory-based 

servation concern biophysical filters quantitative
respond to environ- (4) Spatiotemporal models
mental change within variation
particular management
areas?

Macro- (1) What are the determinants (1) Climate and biogeo- (1) Observational tests Reach 104 m2 – 
(Basin 109 m2 – of patterns of diversity, graphy of simple theory basin 109 m2

global 1014 m2) productivity, or trait distri- (2) Connectivity and (2) Correlative models
butions across regions dispersal (3) Multi-factor theory-
with dissimilar species? (3) Aggregated effects based quantitative

(2) How do species of conser- of local biophysical models
vation concern respond to filters
environmental change (4) Spatial structure
across their entire range?

(3) Where and how do nutrients
and gasses emerge from a 
landscape?
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nected and interacting habitat patches that are influ-
enced by regional conditions, with spatially and tempo-
rally variable hydrology, geomorphology, and biogeo-
chemistry that affects the ecology of entire basins. In
theory, habitat patches can be defined at any scale, but
we propose that for macrosystem studies, sizes from reach
to basin are most appropriate (Table 1; Thorp et al. 2008).
Hydrogeomorphic variation is crucial to understanding
riverine macrosystems, so patch sizes need to be of suffi-

cient magnitude to capture this variation. We therefore
focus on valley-segment-sized riverine patches for exam-
ples and discussion (cf functional process zone, ie “hydro-
geomorphic patch[es] intermediate in scale between val-
leys and reaches”; Thorp et al. 2008). Patches can be
identified by geographic information system (GIS) data
and remote sensing (Panel 1) and should contain charac-
teristic and unique spatial and temporal distributions of
microhabitat (WebFigure 1). For instance, valley seg-

Figure 1. The multi-scale factors influencing riverine macrosystems. Fluctuations in population density (a) are influenced by
regional context (eg climate, social systems) (b), habitat patch and human alteration spatial structure (c), and gradients associated
with network position (sites i–iv in [c] ). Social, physical, and biological factors interact across scales and great distances, influencing
population asynchrony among habitat patches and recovery following disturbance, generating thresholds in macrosystem condition (see
text and WebFigure 2 for further explanation).
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Recently, several research groups have simultaneously explored methods of categorizing river segments into distinct hydrogeomorphic
habitat patches (Thoms and Parsons 2003; Flores et al. 2006;  Thorp et al. 2008; Soranno et al. 2010). These approaches have many sim-
ilarities. In general, all use geospatial datasets, including digital elevation models and flooding models to calculate various metrics at the
basin, valley, and floodplain levels. These metrics are then used to delineate relatively homogeneous habitat patches of various lengths
that can be classified for convenience into intuitive categories (eg upland constricted zone for a valley segment patch). The methods
used to define the underlying habitat template in models of riverine macrosystems will likely have critical effects on performance.
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ments with confined channels (eg
canyons) will likely have much nar-
rower distributions of temperature and
hydraulic micro-environments than
unconfined valley segments with com-
plex channels and wide floodplains.
These differences will directly influ-
ence species distributions and biogeo-
chemical processes (Ward et al. 2002).

River ecologists have largely applied
patch concepts at small scales and to
river networks and corridors (Town-
send 1989; Ward et al. 2002; Wiens
2002). A macrosystem perspective
needs to include consideration of
hydrologically connected upland
patches (Figure 2), which may be con-
nected via surface or belowground flow
paths. For example, where soils are
porous, forest patches may intercept
nutrients originating from agricultural
areas and travelling via belowground
flow paths, thereby reducing inputs to
rivers. However, where soils are less
porous, shallow agricultural runoff can
result in high nutrient inputs (Figure 2;
Norton and Fisher 2000). Differences
in belowground hydrology can be cate-
gorized into landscape units or patches
with GIS, similarly to aboveground
patches (Wolock et al. 2004).

Riverine macrosystems may be mod-
eled as interacting upland and riverine
patches, where each patch is a node in
the model and transitions between
nodes are defined by rules for routing
water, nutrients, energy, genes, or
organisms (sensu Helton et al. 2014).
Watershed models, such as the GIS-
based Regional Hydro-Ecologic Simu-
lation System (RHESSys), use this
approach to simulate water and nitro-
gen (N) fluxes (Tague and Band 2004).
Emerging techniques using dynamic
simulation of material fluxes through
spatially explicit networks of riverine
patches in small basins (Helton et al.
2014) could potentially be scaled up to
model riverine macrosystems (Web-
Figure 1). In such models, multiple
potential rules for routing materials and organisms can form
“systems-level hypotheses” about processes in riverine
macrosystems that could be tested using available datasets
for hydrology, chemistry, and species abundance, collected as
part of government monitoring programs. Thus, despite the
inherent difficulties of studying large, complex riverine sys-
tems, multiple tools are emerging for characterizing and

studying these macrosystems.
Ziv et al. (2012) created a model of migratory fish abun-

dance and extinction risk in the Mekong River Basin that
illustrates the practicality of a riverine macrosystems
approach (Figure 3). The model examines the combined
effects of variable habitat patch carrying capacity
(approximated by runoff and surface area) and connectiv-

Figure 2. The influence of land-use/land-cover patches at multiple scales on above- and
belowground flows in a hypothetical basin. Categorizing upland and riverine patches
provides relevant information on sources of water and nutrients, as well as interactive
effects on discharge and nutrient fluxes across the river network. Reaches (a) and (c)
would likely have higher nutrient inputs than reaches (b) and (d), due to the
combination of land-use/land-cover characteristics (eg soil permeability) and the
complexity of the riverine landscape. In reaches (a) and (b), “Ag” stands for agriculture
and in all reach figures, arrow head sizes represent relative magnitudes of flux.



Riverine macrosystems ecology  KE McCluney et al.

52

www.frontiersinecology.org © The Ecological Society of America

ity between upstream spawning patches and downstream
floodplains. The parameterized model was used to evalu-
ate the effects of multiple scenarios of dam development
on fish biomass and species persistence within the basin
(Figure 3, b and c). Results suggested nonlinear relation-
ships between dam construction and fish biomass and
persistence that could not have been easily predictable
without this large network approach.

n Emergent properties of riverine macrosystems

A broad view of rivers can help to predict watershed-wide
ecological responses that emerge from the spatial arrange-
ment of and interactions between upland and riverine

patches. We propose that sensitivity, resistance, and
resilience are important properties of riverine macrosys-
tems. We offer the following three definitions:

Sensitivity: changes in one part of a basin influence
a distant part of that basin (also referred to as tele-
connections; Heffernan et al. 2014).

Resistance: ability of a basin-wide ecological metric
to withstand change in the face of temporal envi-
ronmental variation.

Resilience: ability of a basin-wide ecological metric
to return to similar levels after a perturbation.

Figure 3. A riverine macrosystem model for the Mekong River Basin (modified from Ziv et al. [2012]) that examines the effects of
spatial variation in habitat carrying capacity (approximated by runoff and surface area) and habitat connectivity on migratory fish
biomass and extinction risk under scenarios of dam construction. (a) Map of estimated carrying capacity and dams in the Mekong
Basin. (b and c) Projected effects of hydropower on changes in migratory fish biomass and extinction risk, respectively, under all
possible scenarios of dam creation (approximately 134 million scenarios, gray). These scenarios fall into eight (I–VIII) categories of
key changes to parts of the basin (see Ziv et al. [2012] for details). Black or green dots represent scenarios with the “optimal” balance
of fish condition and hydropower generation. The wide range of changes in migratory fish biomass and endangerment at any given
level of hydropower generation suggests that spatial configuration of dams is an important modifier of dam effects on fish populations.
Color-coded backgrounds in (b) represent hydropower generation levels that result in low (green), medium (yellow), or high (red)
declines in fish production as a result of small increases in hydropower. a.u.: animal unit; TWh = terawatt hour.
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Riverine ecosystems are particularly sensitive to envi-
ronmental change occurring within the basin because of
the high degree of longitudinal connectivity; for
instance, a large dam can alter thermal, sediment, and
flow regimes far downstream (Richter et al. 1998; Graf
2006). Headwater disturbances (eg surface mining) can
modify water quality and ecological conditions for many
kilometers (Lindberg et al. 2011). River basins are also
sensitive to historical changes to the watershed. For
example, the geomorphology and sediment dynamics of
many mid-Atlantic coastal US streams are still heavily
affected by widespread logging and mill dam efforts that
occurred more than a century ago (Walter and Merritts
2008). Although river systems may be at one end of the
spectrum in terms of effects of teleconnections and
macrosystem sensitivity, other systems may experience
similar dynamics. Ocean currents create highly direc-
tional connectivity between widely separated areas,
resulting in high nutrient levels in upwelling zones (eg
Galapagos Islands) or influencing local species persis-
tence through variation in inputs of propagules
(Possingham and Roughgarden 1990). 

Despite the sensitivity of local habitats to distant
changes, many basin-wide ecological processes and con-
ditions exhibit high macrosystem resistance because of
temporal asynchrony among connected, heterogeneous
habitat patches (Ward et al. 2002; Palmer et al. 2009). For
instance, Labbe and Fausch (2000) documented
increased persistence of the Arkansas darter (Etheostoma
cragini) in a heterogeneous river system with cool peren-
nial and warm intermittent pools. Darter growth and
reproduction were higher in the warmer pools during wet
years; however, during dry years, mortality rose when
some of these pools dried up, while populations persisted
in the perennial pools. Thus, the overall combined popu-
lation was more stable over time because of this habitat
heterogeneity and asynchrony.

In general, asynchrony among subpopulations or ecolog-
ical processes in connected habitat patches should lead to
decreases in temporal fluctuations in the size of the entire
population or in a combined ecological metric across time
(Figures 1 and 4; WebFigure 2; Hanski 1999). This princi-
ple is often called the “portfolio effect” because asynchro-
nous dynamics across patches reduces broad-scale ecologi-
cal variability in the same way that a diverse investment
portfolio mitigates financial volatility (Schindler et al.
2010). Multiple factors can produce asynchronous ecologi-
cal dynamics across habitats, including heterogeneity of
physical conditions, species interactions, age classes,
behavior, or genetics (Oliver et al. 2010; Schindler et al.
2010; Carlson et al. 2011). Portfolio effects have been
shown to reduce temporal fluctuations in sockeye salmon
(Oncorhynchus nerka) production in a large Alaskan water-
shed (Figure 4; Schindler et al. 2010). In general, portfolio
effects manifest as a decrease in variability with increasing
scale. This cross-scale resistance is an important emergent
property of riverine macrosystems.

Movement of individuals and materials between
dynamically asynchronous patches should enhance
macrosystem resilience. Classic metapopulation and
metacommunity theories propose that recolonization of
patches by extirpated species promotes system-wide
species persistence and high diversity (Hanski 1999).
Application of metacommunity theory to rivers has
explained spatial patterns of species diversity within river
networks (Patrick and Swan 2011) and at multi-basin
scales (Muneepeerakul et al. 2008).

Although portfolio effects and metacommunity dynam-
ics are important in riverine macrosystems, species traits
and regional differences in climate or geology may alter
the spatial and temporal scales of these phenomena and
their relative strength. For instance, one would expect
aquatic macroinvertebrates or riparian arthropods with
weak adult dispersal mechanisms to exhibit portfolio
effects and metacommunity dynamics at small scales (eg a
subwatershed), while at the other extreme, migratory fish
or birds would be expected to experience portfolio and
metacommunity dynamics within or across major water-
sheds. In support of this idea, Albanese et al. (2009)
found that relative fish mobility was one of the more
accurate predictors of differential recovery of populations
following experimental extirpation. Additionally, though
not a riverine example, Oliver et al. (2010) noted that the
population stability of highly mobile butterfly species
resulted from habitat heterogeneity at larger spatial scales
than less mobile species.

Regional differences may also be important. Areas with
broad, simultaneous, catastrophic disturbances (eg floods,
fires) may show synchronized ecological dynamics in
patches across the basin, thereby decreasing portfolio
effects (eg fire in the western US; Kitzberger et al. 2007).
Any factor that promotes broad-scale synchrony between
habitats or across species should decrease the influence of
portfolio effects and metacommunity dynamics (see
below). 

n Macrosystem effects of human alterations

Certain types of human modifications to river networks
or watersheds can compromise macrosystem resistance
and resilience and lead to the crossing of ecological
thresholds (Palmer et al. 2009; Dodds et al. 2010).
Although the strong directional connectivity of riverine
systems could theoretically make rivers less prone to feed-
back loops at small scales, the cumulative effects of
human alterations across a basin can produce nonlinear
changes in ecological systems (Dodds et al. 2010).
Specifically, the spatial configuration of alterations likely
influences thresholds and shifts in macrosystem condi-
tion. Additionally, as discussed below, human social sys-
tems or the presence of migratory species could promote
broad upstream–downstream feedbacks that could stabi-
lize or destabilize ecosystem states. The details of these
processes are important in predicting nonlinear, difficult
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to reverse regime shifts in riverine macrosystems and in
preserving ecosystem services in the face of climate
change.

Measuring macrosystem change

The sensitivity, resistance, and resilience of entire river
basins to human alteration can best be represented by
metrics of: (1) spatiotemporal heterogeneity of biophysi-
cal habitat conditions, (2) connectivity among patches,
and (3) temporal fluctuations of ecological variables (eg
nutrient retention, population abundances, diversity).
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Portfolio effects require spatially heterogeneous habitats
that either experience environmental variation (eg
drought, floods, thermal extremes) asynchronously or
respond differentially to similar environmental variation
(ie resulting from variation in population structure,
species interactions, or other ecological conditions or
processes). Thus, decreases in spatiotemporal habitat het-
erogeneity should decrease macrosystem resistance. The
combined effects of multiple alterations may homogenize
spatiotemporal habitat variation across broad scales (Poff
et al. 2007) and synchronize ecological dynamics across
patches (Moore et al. 2010). 

Figure 4. The portfolio effect in sockeye salmon (Oncorhynchus nerka) in Alaska. (a) Waters of Bristol Bay, Alaska, associated
with sockeye are in black; fishing areas are indicated by striped areas. (b) The Wood River system (WRS). (c) Coefficient of
variation (CV) of temporal trends of sockeye salmon stocks across scales. Temporal variability of sockeye abundance in the WRS
(gray) is lower for the entire river than for constituent streams and is lower for sockeye across Bristol Bay than for rivers that enter
Bristol Bay. This is particularly true when all age classes are included in the analysis (circles) rather than just the dominant age class
(triangles). (d) The three age classes represented in the analysis. (Reprinted with permission from Macmillan Publishers Ltd: Nature
[Schindler et al. 2010], © 2010.)

(a) (b)

(c)
(d)

No age structure

Age structure

Increasing scale/complexity
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Because habitat connectivity influences the move-
ments of organisms and materials, transmission of distur-
bances, and refuge availability, macrosystem responses to
changes in connectivity are not straightforward. Highly
connected patches may homogenize species across a sys-
tem (Hanski 1999) or may hinder the formation of refu-
gia by conveying disturbances across the network. For
example, when pipes connect urban runoff to streams,
high energy flows move rapidly through stream networks,
homogenizing habitats and synchronizing dynamics (Roy
and Shuster 2009). Intermediate connectivity is less
likely to synchronize a system, allowing individuals from
undisturbed locations to recolonize disturbed areas,
thereby promoting resilience (Labbe and Fausch 2000).
Patches disconnected by barriers (eg dams, levees) pro-
vide little opportunity for recolonization, which reduces
the resilience of the system (Fausch et al. 2002). Measures
of connectivity will vary depending on the ecological
response of interest. We advocate creating several com-
plementary measures of hydrologic and landscape con-
nectivity derived from analysis of land use/land cover,
river-network structure, and water infrastructure data (eg
Cote et al. 2009; Ziv et al. 2012).

We hypothesize that variation in habitat heterogeneity
and connectivity will combine to influence basin-wide
temporal variation (eg coefficient of variation) in an eco-
logical metric of interest, such as salmonid population
size (Schindler et al. 2010). Specifically, a decrease in
habitat heterogeneity within a basin will tend to homog-
enize and synchronize ecological processes and dynamics
across patches within the basin, amplifying basin-wide
temporal ecological variation. Habitat metrics can focus
on a range of biophysical variables (eg flow, sediment,
temperature, nutrients) and macrosystem condition can
be assessed with multiple ecological variables (eg diver-
sity, abundance, species traits or functional groups,
genes). Which metrics are selected will depend on stake-
holder needs, scientific interest, and data availability.
Comparison of macrosystem metrics to local measures (eg
ratios of basin to patch temporal fluctuations in species
abundance) and comparisons across multiple basins
should enable us to better understand the variations
between metrics, to gauge the relative degree of each type
of change, and set management priorities.

Macrosystem impacts of human modifications

In dynamic networks of directionally connected habitat
patches, the extent, degree, and spatial arrangement of
human modifications, embedded within regional climate
and social systems, should greatly alter macrosystem
dynamics. However, insufficient research has focused
explicitly on the spatial arrangement of human alter-
ations to watersheds (but see Ziv et al. 2012; Grantham et
al. 2013) or how these alterations influence complex,
cross-scale interactions in macrosystems. Individual mod-
ifications (eg dams, levees, land-use changes) can vary in
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extent or degree, and collections of modifications can
vary in density, juxtaposition, heterogeneity, positioning
within the network, dispersion, connectivity, and redun-
dancy (WebFigure 3; WebTable 1). Modifications may
build on each other, amplifying or even nullifying basin-
wide effects. For instance, extensive mining activity adja-
cent to headwaters can magnify changes in water quality
(Lindberg et al. 2011) while drainage systems can increase
N loading or stream temperatures when they connect
urban areas directly to rivers (Craig et al. 2008).
Alternatively, built landscapes may be interspersed with
restoration projects, reducing nutrient inputs to rivers
(Craig et al. 2008), and hydropower dams that cause
large, regular daily peaks in flow can be interspersed with
re-regulating dams that convert these cyclic flow peaks to
a more natural flow regime (Richter and Thomas 2007).
All of these alterations may interact across a single basin
and are themselves influenced by regional climate and
social systems.

To illustrate the ways in which the spatial arrangement
of human modifications may influence macrosystem con-
dition, we qualitatively project changes resulting from
varying density, dispersion, and position of dams in a
hypothetical basin (Figure 5). We suggest that low densi-
ties of dams may cause relatively little macrosystem
change, but localized effects will vary with dam size, dis-
persion, and network position (Figure 5, a–d). Individual
dams on small headwater streams may have strong local
effects that diminish downstream as a result of hydrologic
inputs from unregulated tributaries (Ward and Stanford
1983). Single, large downstream dams also have strong
localized effects without modifying the hydrology of trib-
utaries (Figure 5c). However, downstream dams can dis-
connect upstream habitats from habitats in other basins,
lakes, or oceans, thereby preventing migratory fish
species from reproducing in headwaters (Hitt et al. 2012).
Some migratory species (eg salmon) transport large
amounts of energy and nutrients into river basins, alter-
ing nutrient cycling and ecosystem dynamics in headwa-
ter streams and riparian zones (Gende et al. 2002). Thus,
downstream dams can reduce feedbacks between down-
stream and upstream sections of rivers, leading to system-
wide shifts in ecosystem conditions. The importance of
long-distance dispersal and the mode of dispersal for dif-
ferent species (eg in-stream or overland) should influence
how a downstream dam affects basin ecosystem dynamics.
Cultural differences in the perceived value of affected
ecosystem services may also influence the effect of social
systems on construction or removal of dams (eg Gowan et
al. 2006).

High dam densities can lead to local and basin-wide
hydrogeomorphic and ecological change (Graf 2006; Poff
et al. 2007). Large numbers of dams in a particular
upstream region may have strong localized effects at the
sub-basin scale but comparatively little effect on basin-
wide flow homogenization or on basin-wide ecological
conditions over time (Figure 5f). When uniformly distrib-
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uted in upstream positions, dams may create strong basin
flow homogenization (synchrony across habitats), sub-
stantial declines in habitat connectivity, and major,
basin-wide variations in ecological conditions (Figure
5e). Some data support this view. For example, Ziv et al.
(2012) found that construction of multiple, widely dis-
tributed, upstream dams in the Mekong River Basin
would likely lead to larger declines in migratory fish bio-
mass and greater increases in extinction risk than would
the construction of all the mainstem dams currently
under consideration. 

Channel shape, density, and other aspects of channel
spatial structure will influence riverine responses to
human modifications (Benda et al. 2004). For instance,
the density of dams could be different in two basins of the
same size and with an equal number of dams, but with a
different density of channels (dam density = number of
dams/total channel length). Because unregulated tribu-
taries diminish dam effects and because tributary junc-
tions are important modifiers of channel geomorphology,
the position and density of dams relative to tributary posi-

tion and density may also affect the magnitude of local
and macrosystem change (Benda et al. 2004). 

Although we have focused on dams, similar predictions
can be made for the ecological effects of the spatial config-
urations of other modifications, such as land-use/land-
cover change (eg deforestation, urbanization, conversion
to agriculture). For instance, connectivity of impervious
surfaces in urbanized watersheds influences riverine
ecosystem condition (Roy and Shuster 2009). Impervious
patches directly connected to streams by stormwater infra-
structure have a disproportionate impact on stream
ecosystems (eg large floods, poor water quality, high water
temperature). On the other hand, catchments where
water is directed from impervious patches into vegetated
patches with permeable soil types can buffer stream N lev-
els (eg Lewis and Grimm 2007). Thus, the spatial configu-
ration of land patch types and hydrologic connectivity to
stream channels can form the basis for many best manage-
ment practices in urban watersheds (Craig et al. 2008).

In a macrosystem context, patches could conceivably
consist of entire basins, with their land use/land cover

Figure 5. The interactive effects of dam density, dispersion, and positioning (see horizontal and vertical labels) on the macrosystem
resistance/resilience of the basin. Panels (a)–(h) represent possible scenarios of dam arrangement varying in each aspect of spatial structure.
See text for full explanation. Note: small tributaries are not shown, but they lead to diminishing effects of dams downstream.

(a)                         (b) (c)                                      (d)

(e)                         (f) (g)                                      (h)
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and connectivity influencing regional resistance and
resilience. For instance, organisms in a forested watershed
could recolonize well-connected urbanized watersheds,
contributing to multi-basin resilience. A macrosystem
approach is therefore well-suited to various scales, from
connected reaches in a watershed to watersheds within a
large region (Table 1). 

n Crossing ecological thresholds

Interactions between climate, social systems, geomor-
phology, and human alterations may promote ecological
thresholds in macrosystems by modifying portfolio effects
and metacommunity dynamics. We believe that four con-
ditions are associated with nonlinear thresholds: (1)
when productive “source” habitats can no longer sustain
populations outside these habitats (eg when pollution in
headwaters leads to extirpations far downstream); (2)
when “source” habitats begin to sustain populations out-
side sources (eg lentic tolerant species emigrating from
reservoirs); (3) when connectivity declines to the point
where species can no longer migrate between important
habitats or recolonize disturbed or restored habitats; and
(4) when human values or perceptions of environmental
change interact with systems of governance to cause
shifts in policies concerning watershed alterations. These
conditions are the result of modifications to river basins
that influence habitat heterogeneity, asynchrony, and
connectivity, and may interact with one another across
scales. For instance, Gido et al. (2010) found that in the
US Great Plains, groundwater pumping, dams, fish stock-
ing in reservoirs, and agricultural sediments appeared to
act in combination to influence nonlinear and threshold-
like shifts in the occurrence and abundance of several fish
species. 

Feedbacks between ecological and social systems may
increase or decrease macrosystem resistance and
resilience; for instance, increases in the perceived non-
market value of salmon in northwestern North America
have resulted in dam removals (Gowan et al. 2006). Thus,
differences in socioecological conditions between basins
lead to variation in the type and strength of feedback
loops, altering macrosystem resistance and resilience and
the expectation of crossing ecological thresholds.
Socioecological comparisons across basins could help
inform future management efforts.

Finally, by our definitions highly altered river basins
can be resistant and resilient to change (including
restorations) as a result of legacy effects from human
activities and ongoing pressure from human alterations
(Dodds et al. 2010). This sort of resistance and resilience
will likely provide low levels of endemic diversity and
ecosystem service delivery because these highly altered
basins will not contain suitable habitat for endemic
species and will lack spatiotemporal habitat heterogene-
ity. Thus, macrosystem resistance and resilience may be a
necessary but insufficient goal of sustainable manage-
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ment, which must also take into account the overall
delivery of ecosystem services and their value.

n Research challenges in the study of riverine
macrosystems

Future studies of riverine macrosystem ecology will need
to determine: (1) habitat patch sizes that adequately cap-
ture the biologically relevant heterogeneity of entire
basins; (2) the effects of upland heterogeneity on river
function (eg the sensitivity of in-stream processes to land-
use/land-cover variation); (3) the level of connectivity
required to maintain macrosystem resilience; (4) how
landscape features interact spatially to influence basin-
wide ecological variability and change; and (5) how
cross-scale and socioecological linkages vary across basins
and how these feedbacks alter system resistance and
resilience. These are not only important fundamental
questions in riverine ecology but are directly related to
riverine management at basin scales, as managers must
balance multiple, often conflicting demands for services.
Riverine macrosystems ecology should aid in the manage-
ment of rivers by helping to determine the appropriate
scale, spatial configuration, and extent of management
actions in complex, interactive, and dynamic riverine
landscapes.
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