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RESEARCH ARTICLE
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Abstract
Circadian rhythms are common in many cell types but are reported to be lacking in embry-

onic stem cells. Recent studies have described possible interactions between the molecular

mechanism of circadian clocks and the signaling pathways that regulate stem cell differenti-

ation. Circadian rhythms have not been examined well in neural stem cells and progenitor

cells that produce new neurons and glial cells during adult neurogenesis. To evaluate circa-

dian timing abilities of cells undergoing neural differentiation, neurospheres were prepared

from the mouse subventricular zone (SVZ), a rich source of adult neural stem cells. Circadi-

an rhythms inmPer1 gene expression were recorded in individual spheres, and cell types

were characterized by confocal immunofluorescence microscopy at early and late develop-

mental stages in vitro. Circadian rhythms were observed in neurospheres induced to differ-

entiate into neurons or glia, and rhythms emerged within 3–4 days as differentiation

proceeded, suggesting that the neural stem cell state suppresses the functioning of the cir-

cadian clock. Evidence was also provided that neural stem progenitor cells derived from the

SVZ of adult mice are self-sufficient clock cells capable of producing a circadian rhythm

without input from known circadian pacemakers of the organism. Expression ofmPer1 oc-

curred in high frequency oscillations before circadian rhythms were detected, which may

represent a role for this circadian clock gene in the fast cycling of gene expression responsi-

ble for early cell differentiation.

Introduction
Adult neurogenesis produces new neurons from neural stem progenitor cells (NSPCs). This
neural plasticity provides interneurons for the mammalian hippocampus, olfactory bulb (OB),
and other brain structures throughout life [1]. NSPCs follow a defined progression in cell
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differentiation that is best understood in the dentate gyrus (DG) of the hippocampus and the
subventricular zone (SVZ) near the lateral ventricles [2]. A daily rhythm in cell cycle entry of
stem cells has been described in the adult mouse hippocampus [3], indicating that circadian
pacemakers may regulate NSPC differentiation. Similarly, circadian gene expression rhythms
have been identified in the hippocampus [4] and OB [5], possibly serving to optimize timing of
neurogenesis [3] by providing more responsive cells when they are most needed for fine dis-
crimination of sensory information [6]. Adult neurogenesis in many ways follows the behavior
of embryonic stem cells, which undergo self-replication and also differentiate into progenitor
cells that eventually give rise to various mature cell types [7]. Adult neural stem cells in the
SVZ self-renew and produce neurons and glial cells sequentially through several differentiation
stages that appear transiently during neurogenesis and have identifiable cell markers [6].

Although in situ hybridization has shown that expression of the core circadian clock gene
mPer2 oscillates in the mouse DG [8], what generates the circadian timing signal is unknown.
It remains unclear whether circadian rhythms occur in the heterogenous population of differ-
entiating cells, mature neurons, or the mostly quiescent stem cells. The NSPCs of the DG may
contain intrinsic circadian pacemaker capabilities. They may instead be driven by circadian
pacemakers located in other cells within these brain regions or clocks elsewhere in the organ-
ism [9,10]. Bioluminescence imaging (BLI) of hippocampal explant cultures has revealed circa-
dian rhythms inmPer2 expression indicating that autonomous circadian clocks are present [4],
but the source of the timing signal within this tissue has not been localized further. Daily
rhythms in expression of a second clock gene Per1 in the intact DG are in phase with rhythms
of the master circadian clock in the hypothalamic suprachiasmatic nucleus (SCN) [11], sug-
gesting that any NSPC circadian clocks within the DG, or possibly the SVZ, may also be cou-
pled with the circadian timing system.

Circadian rhythms expressed in mouse or rat OB can function independently of the SCN
[12]. These oscillations appear to enhance olfactory responsiveness at night [12] and also inter-
act with the SCN’s timing of daily behaviors [13]. Circadian rhythms inmPer1 andmPer2 gene
expression are present in the mitral and tufted cells of the rat OB and the granule and mitral
cells of the mouse OB [14]. Late embryonic neurons from the rat OB express circadian rhythms
in action potential frequency [15]. Unlike the DG, progenitor cells of the SVZ produce imma-
ture neurons that migrate from the SVZ through the rostral migratory stream (RMS) to be-
come interneurons of the OB [16]. Various sensory stimuli modulate OB neurogenesis. For
example, OB granule cells in mice undergo apoptosis at a higher rate following daily scheduled
feeding [17], and olfactory cues must be available during a critical window for granule cell mat-
uration between 2 and 4 weeks after neurogenesis in the SVZ [18]. Recently, it has been shown
that suckling by pups synchronizes circadian rhythms in the OB of the dam [19].

Embryonic neural stem cells and differentiating stem cells of the adult testis lack detectable
circadian rhythms [20,21]. One possible explanation for this absence is the activity of stem-
ness-maintaining genes producing factors that suppress differentiation. These gene regulators
may not be compatible with functions of proteins such as mPer1, mPer2, or BMAL1 that serve
in the circadian timing mechanism. As reviewed by Gimble et al., [22] studies suggest a close
relationship between circadian and stem cell biology through hypoxia-induced transcriptional
regulators [23,24], chromatin remodeling enzymes [25,26], the cell cycle inhibitor p21WAF/
CIP1 [27], and Wnt signaling [28–30].

To determine when circadian rhythms first appear during adult neurogenesis, in relation to
sequential differentiation events, we used a well-characterized paradigm of in vitro adult neu-
rogenesis and applied BLI to monitormPer1 gene expression continuously in mouse SVZ neu-
rospheres. These non-adherent clusters of stem cells and progenitor cells in many ways
resemble cells undergoing neurogenesis in vivo [31]. Neurospheres were induced to form in
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suspension cultures containing stem cell medium (SCM) that is devoid of serum but includes
epidermal growth factor (EGF) and basic-fibroblast growth factor (FGF2) to suppress differen-
tiation. An exchange with serum-containing medium (SM) or medium containing the serum
supplement B27, without added EGF or FGF2, stimulates neurospheres to differentiate and at-
tach as they transform into cell culture monolayers [32]. We describe a correlation between dif-
ferentiation state of these neural stem cells and their circadian rhythm status.

Materials and Methods

Animals
TransgenicmPer1::lucmice expressing firefly luciferase under control by themPer1 gene pro-
moter [33] were bred and maintained in cycles of 12 h light and 12 h dark to entrain their circa-
dian system. Animal procedures were approved by the BGSU Institutional Animal Care and
Use Committee and met the requirements of the NRC Guide for Care and Use of Laboratory
Animals.

Neurosphere cultures
Adult male or female C57BL/6 mice (3–5 months old) were euthanized using isoflurane. Brains
were removed quickly and coronal slices were made with a Brain Blocker (PA 001 Rat; David
Kopf Instruments, Tujunga, CA, USA) and the SVZ region was dissected. The tissue was
washed 4–5 times in cold HBSS and then enzymatically digested with papain and DNAseI
(Worthington Biochemical, Lakewood, NJ, USA) for 25–30 min at 37°C, followed by 2–3
washes in DMEM with no added growth factors. The tissue was then mechanically triturated
and passed through a 40 μm cell sieve (Falcon; BD Biosciences Discovery Labware, Bedford,
MA, USA). The cell suspension was washed and centrifuged for 5–6 min 4 times. The superna-
tant was discarded and the pellet was re-suspended in SCM, which consisted of DMEM with
10 ng/ml FGF2, 20 ng/ml EGF (Life Technologies, Grand Island, NY, USA). Cells were plated
at a density of 2.0–2.5 x 104 cells/ml in SCM. After 4–6 days, neurospheres were observed, as
described in a previous study [34]. Between 7 and 10 days in culture, neurospheres of at least
50-μm diameter were collected along with the entire contents of the dish and centrifuged for 5
min at room temperature. The pellet was resuspended in 5–7 ml of SCMmedium, triturated to
form a cell suspension, and plated in fresh SCM, as described for neurosphere cultures [35,36].
Each original dish was passaged into two dishes, and these secondary spheres were used
for experiments.

Stem cell markers and confocal microscopy
Neurospheres were fixed in 100% methanol for 10 minutes and standard immunocytochemis-
try was applied that was adapted from a previous study of enteric neurospheres [37]. Immuno-
fluorescence staining was used to identify neural stem progenitor cells, neural progenitor cells,
neurons and glia. Primary antibodies were used at the following dilutions: chicken anti-Nestin
(Aves Labs, Tigard, OR, USA) 1:1000; chicken anti-Dcx (Aves Labs) 1:750; chicken anti-NeuN
(Aves Labs) 1:1000; rabbit anti-BetaIII-tubulin (Cell Signaling Technology, Danvers, MA,
USA) 1:1000; mouse anti-GFAP (Cell Signaling Technology) 1:1000; rabbit anti-Musashi1
(Msi1, Cell Signaling Technology) 1:1000; rabbit anti-SOX2 (Life Technologies) 1:500. Samples
were rinsed after overnight incubation at 4°C, and were incubated for 2 hrs with appropriate
Alexa488 and 458 secondary conjugated antibody (Life Technologies). Confocal microscopy of
spheres was performed with a DMI3000B inverted microscope (Leica Microsystems, Buffalo
Grove, IL, USA) equipped with a Spectra X LED light engine (Lumencore, Beaverton, OR,
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USA), X-Light spinning-disk confocal unit (CrestOptics, Rome, Italy) and a RoleraThunder
cooled CCD camera with back-thinned, back-illuminated, electron-multiplying sensor (Photo-
metrics) with Metamorph software controlling image acquisition and data analysis (Molecular
Devices, Sunnyvale, CA, USA). Confocal images were collected with 20X and 40X objectives
using standard DAPI, fluorescein, and rhodamine filter wavelengths.

Neurosphere bioluminescence imaging
Neurospheres maintained in culture dishes containing SCM were transferred manually with
1 ml pipette tips to either SCM, DMEM containing 10% FBS (SM), or DMEM containing the
serum supplement B27 at the suggested dilution (Life Technologies). Approximately 10–15
spheres that were 100–200 μm in diameter were moved to a second 35-mm tissue culture dish
containing 2 ml medium where they were imaged for up to 8 days to detect any circadian
rhythms in bioluminescence. Media contained 100 U/ml penicillin and 100 μg/ml streptomy-
cin. All media used during BLI contained 10 mMHepes with pH adjusted to 7.2 and bicarbon-
ate levels adjusted for use in room air [38]. To provide synchronization of individual circadian
oscillator cells to a common phase of the circadian cycle [39], some of the spheres in SM or
SCM were given 20 μM forskolin in 0.01% (v/v) DMSO for 2 hours, which was removed with
two SCM exchanges immediately before 0.2 mM luciferin was added and BLI began.

During imaging, the culture dish was covered with a temperature-controlled optical window
sealed with silicone grease and maintained at 37°C (Cell MicroControls, Norfolk, VA, USA).
Spheres were imaged with a back-thinned, back-illuminated CCD camera cooled to -90°C
(CH360; Photometrics, Tucson, AZ, USA) and a 50-mm Nikkor f/1.2 lens (Nikon, Melville,
NY, USA) combined with two close-up lenses (+10 and +4 diopter) that were used together.
The field of view was 25% of the dish area, and the depth of field was greater than the height of
the neurospheres. Neurospheres were illuminated with red LED light when focusing the cam-
era to collect brightfield images and when handling cultures. Luminescence images were cap-
tured with 2 x 2 binning and sequential 1-hr exposures over several days for a maximum of 8
days. Images were analyzed using V++ (Photometrics) and ImageJ (NIH) software.

Data analysis
Bioluminescence images were processed to remove cosmic ray artifacts by keeping the mini-
mum value at each pixel when comparing every two frames in the time series. A single region-
of-interest (ROI) was drawn over each sphere at each frame in the time series. The ROI was
moved when needed to correct for any movement of the sphere, but it remained the same size
and shape. Spheres that produced a detectable signal for at least 5 days of imaging were ana-
lyzed. The first 12 hours of imaging was excluded to eliminate the initial surge in biolumines-
cence after luciferin was added. Detrending the BLI data was done by 24-point running average
subtraction as described previously [40]. A five-point running average was then applied, and
the times when peaks occurred were measured using the Peak Analyzer routine in OriginLab
9.0 software (OriginLab, Wheeling, IL, USA). As described previously [38], we used a similar
criterion to remove the effects from transient or damping signals to find the peak, which is the
highest time point between a rising and a falling phase. Peaks, when identified by Peak Analyz-
er, were accepted only if the amplitude was greater than or equal to 30% of the amplitude of the
peak occurring before and the one during the next peak following the cycle. Amplitude was cal-
culated as the difference between the peak and the trough, which was the previous minimum
after the last falling phase. Using the peak phase of each circadian cycle, Rayleigh’s test for uni-
formity was performed using Oriana circular statistics (Kovach Computing Services, Pentraeth,
Wales, UK) to determine whether the phases of circadian rhythms were significantly clustered.
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Confocal fluorescence images were collected in a Z-series, and frames that were approximate-
ly one third of the distance into the sphere were deconvolved with Autoquant 3D deconvolution.
The percentage of neural stem cells was then measured using the Metamorph Multi-Wavelength
Cell Scoring routine after background intensity was subtracted based on the average intensity
measurements from controls in which primary antibody was omitted. Threshold for detection
was 50% of the maximum pixel intensity. Other data set means were compared using Tukey’s
multiple comparison test, Chi-square analysis, Mann-Whitney U test, and one-way analysis of
variance (ANOVA) followed by Scheffe post hoc test (p< 0.05). Linear correlation was per-
formed with OriginLab.

Results

Circadian rhythms are rare in neurospheres maintained in stem cell
medium
To identify the status of circadian rhythms in SCM, SVZ neurospheres were prepared from
mPer1::lucmice [33] and imaged in SCM for 6–7 days. The first 3 and last 3–4 days (early and
late components) as well as the entire time series were analyzed. Measurements were made
from spheres in four dishes. This procedure was repeated using spheres in SCM without the
forskolin pulse (two dishes). Average bioluminescence intensity recorded over time from each
sphere was characterized as either circadian (19–29 hrs, Fig 1A), ultradian (<19 hrs, Fig 1B),
or non-rhythmic (>29 hrs or no significant oscillation) based on the strongest frequency com-
ponent of a Lomb-Scargle spectral analysis after detrending the signal as described previously
[39]. Only 2 of 9 were circadian in the forskolin-treated SCM group, and these oscillations
lasted for only one cycle (Fig 1A and 1C). One of 8 spheres in the non-forskolin group was cir-
cadian (Fig 1D). When imaged in SCM, irrespective of forskolin treatment, spheres showed
primarily ultradianmPer1 expression (chi-square test, χ20.05,15 = 24.996, p<0.05 followed by a
Tukey multiple comparison post hoc test q1 0.05,15 = 4.38, p<0.05). Many spheres had low-fre-
quency oscillations that were beyond the circadian range and were not of further interest in
this study.

Circadian rhythms inmPer1 gene expression emerge in neurospheres
during differentiation in serummedium or B27 medium
Neurospheres were isolated from culture in SCM and moved to a second culture dish contain-
ing SM to induce cell differentiation. Neurospheres were imaged with or without forskolin syn-
chronization. Analysis of the late component of the time series showed that 75% of
neurospheres were circadian (15 of 20) and 10% were ultradian (2 of 20) in SM after forskolin
synchronization (Fig 1E–1G), whereas 25% were circadian (2 of 8) and no ultradian rhythms
were detected (0 of 8) in the SM group not treated with forskolin (Fig 1H). Significantly more
circadian rhythms were present in SM than in SCM, with or without forskolin synchronization
(MannWhitney U test, p = 0.02; χ20.05, 5 = 11.07, p<0.05, q1 0.05,5 = 3.69, p<0.05). The pro-
portion of spheres expressing ultradian rhythms after forskolin treatment was not significantly
different in SM, SCM, or B27 medium (p>0.05).

Average periods of circadian spheres, based on peak-to-peak intervals, are shown in
Table 1. When the periods at the first and third cycles were compared to evaluate the stability
of rhythms over time there was no significant difference between SM and B27 spheres (paired
t-test, p>0.05). Both groups had been treated with forskolin. A linear regression was also used
to identify any effect of time in culture on period for these two groups, and there was no signifi-
cant change in either direction (SM: r = 0.019, R2 = 0.011; B27: r = 0.062, R2 = 0.005). Also,
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Fig 1. Changes inmPer1 expression from ultradian to circadian during neurosphere cell differentiation. Bioluminescence was recorded from
individual spheres that were first treated with forskolin and then maintained in SCM (A) or stimulated to differentiate in SM (E, F) or B27 medium (I, J).
Bioluminescence was also recorded from spheres that were not treated with forskolin before maintenance in SCM (B). Shown is the 5-point running-average
of detrended data as analog-to-digital units of the camera (ADUs). The proportion of spheres that were ultradian (U), circadian (C) and non-rhythmic (N) after
4 days are shown with or without forskolin treatment for spheres in SCM (C, D), SM (G, H) and B27 medium (K). Arrows indicate when the 2-hr forskolin
pulse ended.

doi:10.1371/journal.pone.0122937.g001

Table 1. Summary of neurosphere circadian periods.

Culture condition Spheres tested Spheres circadian Average period ±SD (hours) Mean amplitude ±SD (ADUs)

SCM with forskolin treatment 9 2 23.5 ±6.3 26.21 ±13.6

SCM without forskolin treatment 8 1 22 38.13 ±26.2

SM with forskolin treatment 20 15 24 ±3.0 103.6 ±101.1

SM without forskolin treatment 8 2 21 ±2.8 61.5 ±42.0

B27 medium with forskolin treatment 8 7 21.71 ±3.3 84.52 ±27.5

Spheres were imaged in SCM and SM with or without forskolin synchronization or in B27 medium. Mean amplitude of spheres that were circadian by

Lomb-Scargle analysis was measured on the 2nd cycle during the last 3–4 days of imaging (late). Periods were determined from peak-to-peak intervals of

all cycles.

doi:10.1371/journal.pone.0122937.t001
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there was no significant correlation between amplitude and period when all spheres were ana-
lyzed (r = -0.124, R2 = -0.025, n = 27) or when the SM and B27 groups were
analyzed individually.

As a second way to induce differentiation, two dishes of SCM-grown spheres were given for-
skolin treatment and then imaged in B27 medium. Analysis of the late component showed that
87.5% of the neuropheres were circadian (Fig 1I–1K), and there was no significant difference in
the number of circadian spheres between the B27 and SM forskolin-treated groups (t-test,
p = 0.315). No ultradian rhythms were detected in the B27 forskolin-treated group. Compared
to SCM, circadian rhythms were more frequently observed in forskolin-treated spheres imaged
in B27 medium (p = 0.050; χ20.05,5 = 23.12, p< 0.05, q1 0.05,5 = 3.76, p< 0.05).

To represent the fate that spheres followed in the three different media conditions, spheres
were grouped by their initial state during the first 3 days of imaging (early) and their state dur-
ing the final 3–4 days (late). These categories consist of nine paths that spheres could take dur-
ing differentiation and are shown in Fig 2A, in which “UU”, “CC”, and “NN” represent spheres
that remained ultradian, circadian, or non-rhythmic throughout 5–7 days of imaging in SCM,
SM, and B27. The most common path taken by neurospheres in SM or B27 was to the circadian
state during the late stage of imaging.

Stem cell state declines following transition into differentiation-inducing
environments
Following immunofluorescence staining for markers of stem cells and differentiated cells, it
was clear that the population of identified NSPCs declined as differentiation progressed, but
undifferentiated cells remained throughout the 7 days of BLI (Fig 2B). The neurospheres did
not fully differentiate into a complete monolayer cell culture during BLI. To characterize the
extent of differentiation, partly differentiated cultures were fixed at different time intervals,
after the 1st, 4th and 7th day of differentiation in SM or B27 medium, mimicking conditions
during BLI. NSPCs within neurospheres were identified by immunofluorescence using anti-
SOX2 [41] (Fig 3A–3C), anti-Nestin and anti-GFAP [42] (Nestin+/GFAP+, Fig 3D–3F), anti-
Msi1 [42] (Fig 3H), and anti-Nestin alone (S1A–S1C Fig). Hoechst 3342 or propidium iodide
(PI) were used to identify cell nuclei.

During neurogenesis in the SVZ, neuroblast (type C) cells that are positive for doublecortin
(Dcx), a marker for the neuroblast-like cells, migrate through the RMS to the OB [43]. To de-
termine whether neuroblast-like cells were present during BLI, neurospheres were immunos-
tained for Dcx after 4 days in SM or B27 medium (Fig 3G and 3J, respectively). Dcx+ cells were
significantly more abundant in neurospheres maintained in B27 medium (57.71 ±7.67%, 280,
n = 7) when compared to SM (Table 2; t = 3.820, p<0.001). Mature neuronal cells were almost
entirely absent when circadian rhythms were detected at the end of 4 days of differentiation in
SM (Table 2, Fig 3I) or B27 medium (1.30 ±1.1%, n = 6, Fig 3L), as determined by staining
against the marker for terminally differentiated neurons NeuN [44]. After four days of differen-
tiation in B27 medium, neurospheres were positive for BetaIII-tubulin (41.40 ±7.1%, n = 7, Fig
3K), a marker for immature neurons [45]. No BetaIII-tubulin+ cells were observed in neuro-
spheres after 4 days of differentiation in SM (S1D Fig). NeuN+ cells were present in neuro-
spheres differentiating for 7–8 days in B27 (S1E Fig).

We determined the relationship between the stem cell states of the SVZ cultures in differen-
tiating medium to their rhythmicity. The BLI time-series data in Fig 1 showing the percentage
of rhythmic spheres was compared with the percentage of cells that were SOX2+, Nestin+/
GFAP+, or Nestin+ alone (without co-localization). Cells that were GFAP+/Nestin- (mature
astroglia) were also quantified to characterize the differentiation state of the culture. Fig 2B
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shows that a negative correlation exists between circadian rhythmicity and stem cell state of
the sphere cultures (SOX2: slope = -0.8496 ±0.02085, R2 = 0.9988, p = 0.0156; Nestin+/GFAP+:
slope = -0.7801 ±0.01338, R2 = 0.9995, p = 0.0099; GFAP+/Nestin-: slope = 0.2915 ±0.01603,
R2 = 0.9940, p = 0.0336). As shown, the percentage of spheres that were rhythmic correlated
with the decrease in stemness and increase in differentiation status.

Forskolin synchronizes circadian clocks within neurospheres
Forskolin was used to synchronize clocks within spheres, but to verify that it was effective in
these undifferentiated cultures we compared the phase at the first, second, and third peaks
after the forskolin pulse for spheres expressing a circadian rhythm. In SM the 1st and 2nd peaks
were clustered significantly near the predicted phase, approximately 24 hours after the treat-
ment, according to the Rayleigh test (Fig 4A). The mean vector occurred at 22:44 ±3.45 hrs SD
(Z = 3.98, p = 0.014) and 22:55 ±4.03 (Z = 2.96, p = 0.047) for the 1st and 2nd peaks, respective-
ly, where 0:00 indicates the end of the 2-hr forskolin pulse. The spheres were not significantly
clustered by the third peak (Z = 0.78, p = 0.471, n = 10 spheres for all peaks). The phases of
spheres imaged in B27 medium were significantly clustered only during the first circadian
cycle (Z = 2.939, p = 0.047, n = 7), and the mean vector was at 10:42 ±3.56 hrs, about 12 hours
out-of-phase with the SM group (Fig 4B).

Although forskolin was used here to synchronize clock cells, it has been reported to have
differentiation-inducing properties as discussed previously [39]. In one study, 5 μM forskolin
in medium with 0.5% serum caused differentiation of mouse whole-brain neural stem cultures
after 7 days of exposure [46]. To test whether the 2-hr forskolin pulse used here to provide syn-
chronization between spheres and within spheres caused differentiation, the percentage of cells
expressing the stem cell marker SOX2 was determined by immunofluorescence. There were
no significant differences in the prevalence of SOX2+ cells when comparing forskolin-treated
and untreated spheres after 96 hrs in SM (t = -1.59, p>0.12). The percentage of SOX2+ cells
in 4-day SM spheres was 47.11% ±1.46 with forskolin treatment and 43.26% ±1.89 without
treatment.

Discussion

Initiation of circadian rhythms during neurosphere differentiation
The circadian rhythms inmPer1 gene expression observed in individual SVZ neurospheres in-
dicate that spheres contain a functional circadian clock while they differentiate in vitro. As pre-
dicted, stem cell markers were identified throughout the neurosphere, suggesting that circadian
rhythms originated within NSPCs. Similarly, tumorspheres that form in vitro from cancer
stem cells are also enriched with stem cell markers and express circadian rhythms inmPer2 ac-
tivity [39]. Although some cells within the SVZ neurospheres may not contain a circadian
clock, a substantial number of cells are rhythmic and are in an adequately close phase relation-
ship with each other to provide a measurable ensemble circadian rhythm from entire spheres.

Fig 2. The rhythmic state of spheres during early and late exposure to three culture conditions. A:
Spheres were maintained in either SCM, SM or B27 medium. Spheres were imaged immediately after a
forskolin treatment to synchronize circadian clock cells or after no treatment. Shown is the percentage of
spheres that began in a particular state (C: circadian, U: ultradian, N: nonrhythmic) during the first 3 days of
imaging (early) and their state during the final 3–4 days (late) of imaging sessions. Under differentiating
conditions (SM or B27) the three paths to the circadian state (UC, CC, and NC) were most commonly
observed. B: The increase in the percentage of spheres showing circadian rhythms is correlated with an
increase in the differentiation marker Nestin-/GFAP+ and negatively correlated with the decline in stem cell
markers (Nestin+/GFAP+, Nestin+, and SOX2+) during 7 days in SM.

doi:10.1371/journal.pone.0122937.g002
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Fig 3. Emergence of circadian rhythms before fully differentiated neurons appear. Spheres were synchronized by forskolin treatment and fixed after
differentiation in SM or B27 medium, mimicking BLI conditions. Hoechst (blue) or propidium iodide (red) were used as nuclear stains. NSPCs were identified
as SOX2+ (cyan; A-C: after 1, 4, 7 days in SM), Nestin+/GFAP+ (yellow; D-F: after 1, 4, 7 days in SM; red: GFAP, green: Nestin) or Msi1+ (yellow;H: after 3
days in SM). Additional spheres were fixed after differentiation in medium with serum or B27 supplement to stain for progenitor cells as Dcx+ (Yellow;G, J:
after 4 days in SM or B27, respectively). Immature neuronal cells were identified as BetaIII-tubulin+ (Green;K: after 5 days in B27 medium), and mature
neuronal cells as NeuN+ (Yellow; I: after 4 days in SM and Green; L: after 4 days in B27 medium). Scale bars = 50 μm, andA-C, E, H, I, andK are at the
samemagnification.

doi:10.1371/journal.pone.0122937.g003
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Neurospheres also displayed fast, ultradian oscillations ofmPer1 gene expression, particu-
larly when maintained in SCM. This is the first time that ultradian or circadian rhythms in
Per1 gene expression have been described in neural stem cell cultures, and it suggests that
media conditions alter both the differentiation and rhythms of these cells. It agrees in principle
with previous studies of mouse embryonic stem cells in which differentiation was correlated
with circadian rhythmicity, and dedifferentiation suppressed circadian rhythms [20]. It is pos-
sible that the observed ultradian oscillations inmPer1 within SVZ neurospheres actually result
from uncoupled cellular circadian oscillations that appear at the whole-neurosphere level as
fast oscillations created by the multiple peaks of desynchronized rhythms. However, the ade-
nylate cyclase activating agent forskolin was used to bring circadian oscillators into phase with
each other. This treatment synchronizes circadian oscillators in rat-1 fibroblast cell cultures
[47] and tumorsphere cultures [39] with the first peak of the circadian oscillation in Per1
mRNA occurring about 20 hours after the treatment [47].

Switching neurospheres from SCM to either SM or B27 induced differentiation and in-
creased the proportion of spheres expressing circadian rhythms. It is possible that this removal
of EGF or FGF2 from the medium initiated emergence of circadian rhythms by allowing the
cells to differentiate, suggesting that the more immature NSPCs are unable to generate circadi-
an timing. There are two possible causes for this result: First, the necessary full set of core circa-
dian clock genes are not yet expressed at this stage of differentiation. However, expression of

Table 2. Cell types identified by markers for stem cells and differentiated cells in SM.

Cell type Day 1 Day 4 Day 7

SOX2+/Hoechst* 90 ±6.9% (119, n = 8) 47.11 ±4.6% (100, n = 9) 27.38 ±8.9% (110, n = 11)

Nestin+/GFAP+/Hoechst 83.90 ±6.4% (62, n = 7) 48.12 ±7.8% (297, n = 9) 25.59 ±8.1% (255, n = 11)

Nestin+/PI 90.44 ±6.4% (102, n = 10) 71.22 ±4.6% (182, n = 9) 46.40 ±8.9% (202, n = 7)

DCX+/PI N.A. 35.95 ±13.3% (128, n = 9) N.A.

BetaIII-tubulin+/PI N.A. 1.28 ±1.1% (76, n = 7) N.A.

NeuN+/PI N.A. 1.96 ±2.6% (76, n = 7) 2.58 ±4.0% (61, n = 6)

Nestin-/GFAP+/Hoechst 2.94 ±2.7% (62, n = 7) 16.59 ±6.5% (297, n = 9) 25.04 ±5.1% (255, n = 11)

Neurospheres were maintained in SM for the number of days indicated. Shown are the percentages of cells in optical sections that were positive for cell

markers or combinations of markers followed by standard deviation. In parentheses are the total number of cells in the section, identified by nuclear stains

(Hoechst 3342, propidium iodide), and the number of spheres analyzed (n). N.A. = not available. Cells were imaged with a 20X objective lens, except 40X

was used where indicated (*).

doi:10.1371/journal.pone.0122937.t002

Fig 4. Synchronization of circadian neurospheres. A: Shown are the phases of individual neurospheres
in SM expressing circadian rhythms plotted according to the first three peaks during imaging (left to right).
Hour zero corresponds to the time when the forskolin treatment was removed and then projected over the
next three days at 24-hour intervals. The mean vector of phases for individual spheres (arrow) had a
significant magnitude (Rayleigh test, p<0.05) only during the first two cycles.B: Phases of spheres in B27
medium during the first circadian cycle and mean vector showing significant clustering.

doi:10.1371/journal.pone.0122937.g004
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the major core clock genes in mouse neurospheres has been reported [48]. Second, the clock
genes are expressed, but the oscillator cannot operate because necessary non-rhythmic positive
inputs are missing or an inhibitory factor is present in the spheres during early differentiation.
It is also possible that the growth factors in SCM suppress functioning of the clock mechanism.
It seems unlikely that either of the added growth factors can completely suppress circadian ac-
tivity because circadian rhythms were detected in SCM, although these were rare during the
late component of imaging sessions.

Stem cell state and circadian rhythmicity were negatively correlated, but the rhythmicity of
spheres undergoing differentiation in vitro from the most stem-like state in SCM did take vari-
ous paths, such as changing from a non-rhythmic or ultradian state to circadian. When exam-
ining all of the possible paths, the neurospheres that were ultimately circadian during the last
3–4 days of imaging were ones that had been given forskolin and then maintained in either SM
or B27 medium. Spheres under these medium conditions attached and began propagating into
neuroblast and glial-like cells that, by day 6 or 7, stained for Dcx and GFAP, respectively, fur-
ther indicating that more differentiated spheres are more likely to be circadian.

Origins of neurosphere circadian rhythms
It is likely that neurospheres are composed of many individual circadian oscillator cells as well
as non-clock cells that are unable to sustain a circadian rhythm without input of timing infor-
mation from other cells. Similarly, some brain areas when isolated as explant cultures produce
circadian activity, whereas others do not. Several major brain structures have been grouped
into three categories: endogenous circadian clocks, rapidly damping slave oscillators (produc-
ing only a single cycle without timing input), and non-circadian (lacking observable circadian
rhythms) [49].

One reason why circadian rhythms were not common in SCM spheres could be because in-
dividual circadian clock cells are present but they are not adequately synchronized to a com-
mon phase to be detected in the whole-sphere recordings. To test for this possibility, spheres in
SCM were given a pulse of forskolin before imaging but the percentage of circadian spheres did
not increase. It is possible, but seemingly unlikely, that the less differentiated cells present in
SCM are not responsive to forskolin but might contain a circadian clock. The circadian
rhythms in spheres imaged in SM did respond to forskolin by showing a significantly clustered
phase that was near the phase expected for this treatment, about 24 hours after the pulse [47].
By the third cycle, the forskolin-treated SM spheres had drifted out of phase and were no lon-
ger clustered significantly, according to circular statistics. Spheres in B27 medium given a for-
skolin pulse were significantly clustered, but this occurred at a phase 12 hours away from the
expected phase. It is possible that the transition into B27 medium had its own phase-shifting
effect that acted in combination with forskolin. B27 medium has been shown to elevatemPer1
expression in cortical astrocyte cultures [50], suggesting that it could cause a phase-shift by al-
tering the level of this core clock component.

Although the forskolin-treated SM spheres were in SCM during the forskolin treatment,
and so were mostly undifferentiated, some circadian clock cells must have been present for the
forskolin to produce synchronization. Because the forskolin-treated SCM and SM spheres were
initially in the same state of differentiation but SCM spheres showed few circadian rhythms for
the next several days, it is likely that the clock cells present were too scarce to be detected within
the larger cell population of non-circadian cells. In the SM spheres, on the other hand, these
early synchronized clock cells likely proliferated in the presence of serum while other cells also
differentiated and proliferated. It is possible that differentiating non-clock NSPCs began to
function as circadian oscillators and were synchronized to the early clock cells through the
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close interactions present in neurospheres (gap junctions, NCAMs, integrin, etc.) [51,52]. Simi-
larly, circadian clock cells may be present at very low numbers during early stages of embryonic
development before circadian rhythms can be detected [53]. Therefore, the data are more rea-
sonably explained if a small number of clock cells are present in neurospheres in SCM and
these maintain a common phase and temporal order during the differentiation process in SM
and B27 medium, while remaining NSPCs differentiate into clock cells.

Circadian rhythms in progenitor cells
As neurospheres differentiated in SM, the initial abundance of stem cell markers declined
(SOX2, Nestin, GFAP+/Nestin+), cells with differentiation markers increased (Dcx, BetaIII-tu-
bulin, NeuN and GFAP), and the percentage of circadian spheres increased. The present study
was not designed to determine whether individual, identified stem cells express circadian
rhythms. Nevertheless, results did indicate that progenitor cells are functional circadian clocks
because of the lack of mature neurons in spheres after 3–4 days in SM even though 50% of the
spheres were able to generate circadian rhythms. Bioluminescence images of spheres after 4
days in SM showed that the signal originated from cells throughout the spheres (S1F Fig). The
astrocytes that were detected at this point in culture could have been responsible for generating
the rhythms because astroglial circadian clocks have been described in vitro [54]. Whether the
small minority of astrocytes present (16.5% according to GFAP+/Nestin- staining) were able to
drive circadian rhythms in a much larger population of progenitor cells is not known. Howev-
er, glial cell secretions can alter activity of neural circadian cells in drosophila [55] and mice
[56].

In a previous study, circadian rhythms were described in neural progenitor-like cells, but
these were in a glioblastoma-derived cell line rather than the non-transformed primary cultures
used here [57]. The present results are not in agreement with a previous study of circadian
gene expression in SVZ cell cultures in which a circadian clock appeared first in mature cells,
and no circadian rhythms in differentiating neurospheres were reported [48]. Similarly, rapidly
differentiating cells lack a detectable circadian rhythm during mouse spermatogenesis [58].

The circadian rhythms observed in neurospheres maintained in B27 medium for 4 days that
were predominantly positive for Dcx indicates that circadian rhythms originate in neural pro-
genitor cells, particularly neuroblasts (S2 Fig), after their fate is determined to become inter-
neurons (granule or periglomerular cells) in the OB [59,60]. It also suggests that circadian
timing in neuroblasts may function during their migratory behavior in the RMS. We predict
that neuroblasts become circadian granule cells upon final differentiation, although a previous
study did not find circadian rhythms in the granule cell layer of the OB [15]. Nevertheless, cir-
cadian rhythms in mature olfactory granule cells may aid in discrimination between closely re-
lated odors, an important adaptive ability for which neural stem cells may be required [6], and
may improve this sensation at times of day when that is most important [61]. Similarly, circadi-
an rhythms in SVZ progenitor cells might serve in establishing the time of day when final neu-
ronal differentiation occurs, optimizing availability of nascent cells with a lower threshold for
the excitation needed to perform odor discrimination [6].

Possible importance ofmPer1 in neurogenesis
It is clear thatmPer1 is expressed in spheres that are not showing circadian oscillations through
BLI. A question that remains is whethermPer1 in differentiating progenitor cells serves in the pro-
cess of neurogenesis, similar to what has been observed for other clock genes. Studies described
an increased expansion rate of neurospheres frommPer2-/- knockout mice that lack circadian
rhythms [62]. Similarly, neural progenitor cell proliferation is increased in DG neurospheres from
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mPer2brdm1 mutant mice [63]. BMAL1 or CLOCKmay also serve in neurogenesis, with or with-
out a functioning circadian clock, as shown by RNA inhibition that decreased differentiation
markers [48].

Along with a circadian function,mPer1 gene expression may also have an important role
when expressed in ultradian oscillations such as those observed in SCM neurospheres. These
rhythms may be working with stem cell-maintaining genes such as the hes family that are ex-
pressed in ultradian oscillations during neurogenesis and embryogenesis where they play an
important role in repressing genes used in differentiation [64]. Neurogenesis and circadian os-
cillators both rely on a collection of basic-helix-loop-helix (bHLH) transcription factors, some
of which are shared between these two time-dependent processes. For example, one gene pro-
moter element used in circadian transcriptional control (an alternative E-box) includes the N-
box that binds the bHLH HES1 protein [65]. The circadian clock could also have a direct effect
on differentiation through its control of an E-box element of the Pax6 gene promoter [66].
Pax6 serves in determining the rate and direction of neurogenesis in the OB [67–69].

If circadian timing, rather than non-rhythmic clock gene expression, has a functional role in
adult NSPCs during early stages of differentiation, circadian oscillations may modulate particu-
lar differentiation events [48,62]. In a similar way, daily oscillations in brain cortisol appear to
gate cell proliferation in adult mouse hippocampus [11]. Again, coupling between circadian
and stem cell-maintaining genes could serve in this control [22]. Alternatively, neurogenesis
and circadian timing processes could act independently within the same cells despite predicted
interactions between the bHLH transcription factors acting on N-box and E-box elements. The
SVZ neurosphere cultures examined here provide a useful assay to investigate the role of circa-
dian clocks and clock-controlled genes in adult neurogenesis. Understanding the relationship
between circadian clock genes and neurogenesis could provide new targets for more effective
treatments and prevention of neurological disorders such as Parkinson’s and Alzheimer’s dis-
eases that are suitable for stem cell therapies [70]. If circadian timing acts on differentiation,
then circadian expression patterns may be manipulated to induce NSPCs to differentiate more
readily into specific cell types needed to compensate for neural deficits.

Conclusions
This exploration of the circadian timing abilities of NSPCs identified autonomous circadian os-
cillators that are visible when growth conditions induce differentiation. Circadian rhythms ap-
pear in neurospheres before mature neurons are present, indicating that NSPCs, which are
very prominent in neurospheres, also have functional circadian clocks. The results neither con-
firm nor deny existence of circadian clocks in the most undifferentiated neural stem cells, the
radial glia-like cells. When NSPCs of the SVZ are allowed to differentiate into neuroblast-like
cells of the RMS they appear to have circadian properties that could be adaptive for their
unique transit to become OB interneurons.

Supporting Information
S1 Fig. Images of spheres during differentiation. Nestin+ cells (green) at days 1 (A), 4 (B),
and 7 (C) in SM with PI-stained nuclei (red).D: Lack of BetaIII-tubulin+ cells (green) with PI
(red) in a neurosphere at day 4 in SM. E: NeuN+ cells (green) with Hoechst-stained nuclei
(blue) at day 7 in B27 medium. Scale bars = 50 μm. F: Three neurospheres in SM used for mea-
suring circadian rhythms inmPer1 expression. Top: Brightfield image at day 0. Bottom: Corre-
sponding bioluminescence image at day 4. Average maximum signal was 444 ADUs ±49.0
(SD). Each pixel represents 61 x 61 μm.
(TIF)
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S2 Fig. Circadian rhythms during neurogenesis. A summary diagram predicting that neural
stem cells (radial glia-like cells) residing in the SVZ lack a functioning circadian clock but can
exhibit high-frequency oscillations in clock gene expression (green). They further differentiate
into neuroblasts and enter the RMS where they exhibit circadian oscillations in clock gene ex-
pression (red). These cells migrate to the OB and differentiate into granule cells and may con-
tribute to previously described OB circadian rhythms (red) [15].
(TIF)
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