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Encouraging sixth-grade students’ problem-solving performance by teaching 

through problem solving

 

Abstract: This teaching experiment provided students with continuous engagement in a 
problem-solving based instructional approach during one mathematics unit.  Three 
sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and 
one section was randomly assigned to experience teaching through problem solving.  
Students’ problem-solving performance and performance on a unit test were analyzed.  
The intervention had a positive effect on students’ problem-solving performance 
whereas the comparison group experienced no changes.  ANCOVA analyses suggest 
that intervention students solved more problems on the posttest than their peers, but the 
comparison group outperformed the intervention group on the unit test.
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 Problem solving has long been a central theme within mathematics education, 

the importance of which is seen in mathematics standards around the world.  To name 

a few, much of the United States adopted the Standards for Mathematical Practice and 

Standards for Mathematical Content (National Governors Association, Council of Chief 

State School Officers [NGA, CCSSO], 2010), Australia draws upon the Australian 

Mathematics Curriculum (Australian Curriculum, Assessment, and Reporting Authority, 

2014), and Japan follows courses of study in mathematics (Ministry of Education, 

Culture, Sports, Science and Technology, 2007).  The National Council of Teachers of 

Mathematics (NCTM, 1980, 1989, 2000, 2006, 2009) has consistently advocated for 

problem solving as part of day-to-day mathematics instruction, with the rationale that 

solving problems is central to doing and learning mathematics (Ball, Ferrini-Mundy, 

Kilpatrick, Milgram, Schmid, & Schaar, 2005; Davis, 1992; Kilpatrick, Swafford, & 

Findell, 2001; Lester, 1994).  The overarching goal of the present study is to describe 

an instantiation of one type of problem-solving instruction within a middle school 

mathematics classroom and explore students’ outcomes compared to their peers who 

experienced traditional teacher-led explicit instruction.  We not only explore this 

problem-solving instruction and its outcomes but also problematize a problem-solving 

approach to mathematics instruction.  

Problems and Exercises 

Problem solving involves a problematic task, which offers a goal for the problem 

solver to accomplish, but the means for achieving the goal are not readily apparent 

(Lesh & Zawojewski, 2007; Schoenfeld, 2011).  A problem requires the problem solver 

to make sense of a problem situation and to make decision about a path to solution, 

which directs an individual toward the desired goal (Schoenfeld, 2011).  Problem solving 
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can be challenging because a solution is uncertain and/or unknown to the problem 

solver.  Problems are distinct from exercises, which have their place in instruction. 

Exercises provide students a context in which they might develop efficiency with a 

known procedure thus improving their procedural competence (Kilpatrick et al., 2001).  

Mathematics teaching that heavily relies on exercises, however, does not support 

students’ problem-solving outcomes (Kilpatrick et al., 2001; NCTM, 2009).   

Framing Teaching Through Problem Solving 

Mathematics instruction frequently separates problem solving from daily 

mathematics teaching (Hiebert et al., 1996).  This practice of separating the two 

encourages the notion that learning mathematics and learning to solve mathematics 

problems are distinct from one another (Hiebert et al., 1997; Hiebert et al., 1996; Hiebert 

& Wearne, 2003; Lambdin, 2003).  A major instructional concern is how to integrate 

problem solving within daily mathematics teaching.  Three distinct approaches to 

problem-solving instruction, teaching about, for, and through problem solving, have 

been discussed in the research literature (Schroeder & Lester, 1989).  Teaching about 

problem solving usually involves heuristic instruction.  Teaching for problem solving 

focuses on teaching students mathematics procedures with the intention that they apply 

this knowledge to solve problems.  Teaching through problem solving (TTPS) involves 

teaching mathematics concepts through problem-solving contexts, provides 

opportunities for students to develop higher-level thinking during mathematical problem 

solving, and takes place in an inquiry-oriented learning environment (Hiebert & Wearne, 

2003; Lambdin, 2003; Schroder & Lester, 1989).  TTPS typically begins with a word 

problem that addresses one or more mathematics concepts and has the potential to 
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engage students in complex forms of reasoning.  These problems typically have 

characteristics of high cognitive demand (i.e., rich) tasks (see Stein & Smith, 1998).  

This approach differs from teaching about and for problem solving on conceptual and 

procedural levels.  TTPS instruction encourages students to learn mathematics without 

stripping away contexts such as those found in realistic settings.  Students must make 

sense of the problem’s situation and the underlying mathematics concepts and 

procedures to solve these problems.  While teachers may encounter pedagogical and 

mathematical challenges for TTPS, problems encourage the greater goal that 

mathematics is a way to help students make sense of their world rather than a set of 

procedures to master (Verschaffel, Van Dooren, Greer, & Mukhopadhyah, 2010).  

Students engaged in TTPS have opportunities to develop problem-solving abilities and 

fluency (Sigurdson, Olson, & Mason, 1994).  It is hypothesized that this growth in 

problem solving and fluency assists learners in building connections between concepts 

and procedures and develop greater adaptive reasoning for effectively and efficiently 

executing procedures at appropriate moments (Sigurdson et al., 1994).  This is a 

hypothesis because such a claim stems from classroom-based research, which is 

inherently complex with a multitude of factors.  

It is not possible to easily separate an intervention’s effects attributed to the 

instructor, instructional method, tasks, and learning environment on students’ outcomes 

when engaging in classroom-based research (Ridlon, 2009; Sigurdson et al., 1994; 

Verschaffel & De Corte, 1997; Verschaffel et al., 1999; Verschaffel et al., 2010).  Hence 

the intervention in this study, TTPS, is defined as an integration of these components, 

which are described more fully later.  The present study aimed to extend the prior 
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research with three objectives.  First, we describe TTPS through vignettes from a 

month-long unit.  Second, we investigated sixth-grade students’ problem-solving 

performance and performance on a unit test following an instructional intervention that 

utilized TTPS.  Problem-solving performance was characterized as the number of 

correct responses to developmentally appropriate word problems.  The unit test 

measured students’ knowledge about focal topics during the unit of instruction (i.e., 

rates, ratios, and data analysis).  Third, we compared intervention students’ outcomes 

with their peers who experienced their typical teacher-led explicit mathematics 

instruction.  

Problem-Solving Instruction 

Prior Research on Problem-solving Instruction 

Several studies across the world have explored students’ problem-solving 

performance and provide support for the present investigation.  Nearly thirty years ago 

Charles and Lester (1984) explored the impact of supplementing everyday mathematics 

instruction with 10-25 minutes of problem-solving experiences in U.S. classrooms.  

Fifth- and seventh-grade students’ who experienced this supplemental instruction had 

more positive problem-solving outcomes when compared to their peers who 

experienced traditional teacher-led explicit instruction focused on procedures.  

Sigurdson and his colleagues (1994) compared students’ outcomes after experiencing 

three types of instruction in Canadian classrooms: (1) traditional procedure-focused 

explicit instruction, (2) an inquiry approach that involved a focus on connections 

between mathematical concepts and procedures, and (3) an inquiry approach 

supplemented with 10 minutes of daily problem-solving work.  Students in the latter 

groups significantly outperformed those in the first group on a test measuring general 
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mathematics content knowledge and had significantly better problem-solving 

performance.  These studies support the conclusion that mathematics instruction 

supplemented with problem-solving instruction focused less on procedures leads to 

improved problem-solving outcomes and positive growth in mathematics content 

knowledge.  They also raise the important question regarding the impact of integrating 

problem solving within mathematics teaching rather than simply including problem 

solving as a supplement to this instruction. 

Verschaffel and De Corte (1997) conducted a teaching experiment in Flanders 

with 10-11 year olds that responded to this question.  Problem solving and mathematics 

content instruction were integrated instead of supplementing mathematics content 

instruction with problem solving.  Their goal was to explore whether students might give 

more realistic (not necessarily correct) solutions to problems after learning about a 

problem-solving model and solving realistic problems in a supportive learning 

environment meant to foster student-to-student discourse.  Daily instruction lasted two-

and-a-half hours over five lessons.  Participants in the teaching experiment provided 

more realistic responses on the problem-solving tests than their peers in a traditional 

learning environment.  While this intervention was modest in its duration, students’ 

problem-solving performance improved following a short period of time engaged in 

mathematics instruction that integrated problem solving and content.  

Finally, in a study most similar to the present study, Verschaffel and his 

colleagues (1999) developed, piloted, and implemented an instructional program for 

Dutch fifth-grade students to examine a program aimed at helping learners employ a 

metacognitive strategy for solving mathematics word problems.  Four sections of fifth-
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grade mathematics classes experienced 20 problem-solving lessons over a four-month 

period while a group of seven comparison sections experienced their typical teacher-led 

mathematics instruction. Instruction was guided by three “pillars” of a successful 

mathematics learning environment (Verschaffel et al., 1999, p. 202): (a) realistic, 

complex, and open problems, (b) independent as well as small- and whole-group 

instruction, and (c) supportive classroom expectations for engaging in mathematics.  

Similar to the present study, the researchers administered a pre- and posttest that had 

similar problems across both measures as well as an achievement test measuring 

general mathematical knowledge and skill.  Students in both groups improved their 

problem-solving performance, but the intervention group made greater gains on the 

problem-solving measure and outperformed the comparison group on the achievement 

test.  Based on these studies of problem-solving instruction, the present investigation 

sought to examine outcomes for students engaged in TTPS instruction for 

approximately 20 lessons implemented consecutively.   

The Current Study 

This exploratory mixed-methods investigation examined the effects of TTPS on 

sixth-grade students’ performance on a problem-solving measure and unit test.  An 

embedded design mixed-methods approach was selected for this study because of the 

study’s aim and nature of the research questions.  The embedded mixed-method design 

allows researchers to unpack statistical findings with qualitative evidence and 

concurrently, qualitative evidence is supported by quantitative results (Cresswell, 2012).   

The first research question focused on within-group differences whereas the 

second and third questions addressed potential between-group differences.  Three 

research questions guided the present study. (1) What is the impact of the intervention 
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on students’ performance on a test of word problems? (2) Does performance on a test 

of word problems differ between students from the intervention and comparison groups? 

(3) Does performance on a teacher-constructed unit test following TTPS instruction 

differ between students from the intervention and comparison group?  In addition, one 

objective of this study was to offer a description of TTPS as instantiated within this 

study.  This description contextualizes the findings, gives voice to student-to-teacher 

and student-to-student interactions, and supports critically examining possible social 

aspects implicating students’ outcomes.   

This investigation values both the social factors (e.g., classroom environments, 

mathematical discourse, and interactions between students as well as their teachers) 

and cognitive factors (e.g., problem-solving ability and content knowledge) of education.  

Both factor types have been shown to impact students’ outcomes (Ridlon, 2009; 

Sigurdson et al., 1994; Verschaffel et al., 1999).  Therefore the findings from the present 

study are meant to spur further conversations about teaching and learning mathematics, 

teaching and learning problem solving, and fostering students’ mathematical 

proficiency.  

Method 

Setting and Participants  

Students came from three sixth-grade mathematics sections taught by the same 

teacher within a K-12 school that represented the diversity of the state of Florida.  

Classes were arranged to meet on a modified block schedule so that classes met three 

times per week.  All sections met for 60 minutes on Monday and 90 minutes on two 

additional days.  One section was randomly assigned to receive the intervention.  

Eighteen students from the intervention classroom and 20 students from each 
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comparison classroom volunteered for the study.  These three sections met on the 

same days, one right after the other.  None of the participants received services for a 

disability or were English Language Learners.  Demographic information for the 

intervention and comparison group is provided in Table 1.  More than half of the 

students identified themselves as white and approximately 20% qualified to receive 

free-or-reduced lunch (FRL).  

INSERT TABLE 1 ABOUT HERE 

Group Comparisons 

We examined the intervention and comparison groups for comparability.  To 

control for differences in prior mathematics instruction, students from the same teacher 

were assigned to the intervention and comparison conditions.  Students’ gender, 

ethnicity, fifth-grade mathematics and reading standardized test scores (i.e., Florida 

Comprehensive Assessment Tests (FCAT)), and FRL status were collected from 

students’ records by school faculty.  There were no significant difference between the 

group’s standardized test scores on the reading FCAT, F(1, 51) = .62, p = .44, and 

mathematics FCAT, F(1, 51) = .17, p = .68 (see Table 2).   

INSERT TABLE 2 ABOUT HERE 

Chi-square analyses were also conducted to determine whether there were differences 

between the groups in terms of gender, ethnicity, and FRL status.  No significant pre-

intervention group differences existed suggesting the groups had similar demographic 

characteristics.  



ENCOURAGING SIXTH-GRADE STUDENTS 9 

Measures 

Students completed three measures including a Problem-Solving Pretest, 

Problem-Solving Posttest, and a test measuring students’ knowledge related to unit-

specific topics.   

Problem-solving tests.  Several steps were taken to create pretest and posttest 

problem-solving tasks.  Initially, problems were translated from Verschaffel et al.’s 

(1999) problem-solving measures, adapted to suit students’ interests and prior 

knowledge, and revised to conform to American English grammar rules.  Each problem-

solving measure included five problems (see Appendix A for posttest items) that were 

matched for content between the pretest and posttest.  Five items on each instrument 

exceeded the minimum number of items necessary to sufficiently measure a single 

construct (i.e., problem-solving ability; Ary, Cheser-Jacobs, Sorenson, & Razavieh, 

2009).  These tasks drew upon a variety of developmentally appropriate mathematics 

concepts and procedures that students should have experienced prior to the study as 

determined by several middle and elementary school teachers and mathematics 

educators.  The teachers and mathematics educators also felt the situations embedded 

within the problems drew on realistic contexts.  Finally, the group agreed that the 

problems could be solved using more than one approach.   

A pilot study was conducted to determine how these measures function with 

sixth-grade students in the U.S. including the measure’s dimensionality, item 

parameters, and measure reliability (i.e., internal consistency and alternate-forms 

reliability).  One hundred sixty-nine sixth-grade students from a nearby school district 

that had similar demographics to the present study’s setting participated in the pilot 

study (see Author, 2011 for more information).  This sample size for five items was 
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adequate for 95% confidence in results with stable item calibrations in the 0.5 logit 

range (Linacre, 1994).  Data were calculated using WINSTEPS Version 3.62.1 (Linacre, 

2006).  Rasch model analysis was employed for two reasons: to determine overall fit of 

the data to the Rasch model and then explore the relative item difficulty.  Related to the 

first reason, item information for the pre- and post tests was explored, specifically 

looking at the mean-square (MNSQ) fit statistic of infit and outfit data.  MSNQ assesses 

an item or person’s (item in this case) contribution to measurement productivity (Drouin, 

Horner, & Sondergeld, 2012).  Perfect MNSQ is one unit, which is rarely found, and 

values far greater than two or less than 0.5 may potentially distort the measurement 

system (Linacre, 2002).  MNSQ values are found in Tables 3 and 4.   

INSERT TABLE 3 ABOUT HERE 

INSERT TABLE 4 ABOUT HERE 

Two items on the measures were slightly higher than two MNSQ units but were retained 

since they were reasonably close to the recommended threshold.   

Rasch reliability is similar to traditional reliability and was computed for 

individuals.  Reliability for the pretest and posttest was high, α = 0.96 and α  = 0.97, 

respectively.  This met the excellent threshold (Duncan, Bode, Lai, & Perera, 2003).  

Alternate-forms reliability was calculated using a correlation statistic.  Results indicated 

that it exceeded the minimum to link scores across tests, r = 0.97 (Ary, Cheser-Jacobs, 

Sorenson, & Razavieh, 2009).   

Rasch separation was examined to investigate how many distinct groups can be 

made based on respondents’ data.  Rasch separation near two units suggests that only 

two groups of respondents can be formed: those who were successful and those who 
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were unsuccessful.  Values greater than 3.00 are considered excellent (Duncan et al., 

2003).  The Rasch separation for the measures was exceptionally high, 4.81.  Thus, 

respondents could be sorted into approximately four distinct groups.  This psychometric-

based evidence indicated that the measure adequately captured the construct, problem-

solving ability, and did so reliably.  Next, the authors explored item difficulty again using 

WINSTEPS Version 3.62.1 (Linacre, 2006).  

Item difficulties characterize the likelihood that a respondent will respond 

correctly to the item.  Item difficulties are measured in logits.  The item difficulty scale 

extends in both positive and negative directions but usually ends near three logits, with 

the average value set at zero logits.  An item with a difficulty parameter of zero logits 

suggests that a respondent has an equally likely chance to answer the item correctly or 

incorrectly.  Items with values greater than one logit are considered to be moderately 

difficult for the average-ability respondent whereas negative logit values are easier for 

the average-ability respondent.  Problem-solving items are more cognitively taxing than 

rote mathematical exercises therefore it should be expected that item difficulties ought 

to be greater than zero logits.  Results from investigating item difficulty suggested that 

items ranged from easier to moderate difficultly (see Table 5).   

INSERT TABLE 5 ABOUT HERE 

Synthesizing these findings with the earlier psychometric evidence leads to the 

conclusion that psychometrically speaking; the five-item measures were working 

sufficiently.  

Unit test. Students’ content knowledge related to rates, ratios, and data analysis 

was measured with a two-page unit test.  Results from the unit test fill a needed gap in 
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the literature.  Previous studies explored general achievement or content outside the 

scope of the instruction; none have investigated students’ performance on a test 

covering only the content addressed during the instructional intervention period.  The 

classroom teacher adapted it from the assessment materials that accompanied the 

class textbook: Big Ideas: Math 6 (Larson & Boswell, 2010).  The test consisted of 16 

short-answer items of which five tasks required two or more correct responses to 

receive full credit.  Twelve items asked students to rewrite ratios in simplest form and 

give the unit rate for a situation described in a verbal exercise.  For example, one item 

asked students to write the statement “1200 calories in 3 liters” as a unit rate.  The other 

tasks were focused on finding the mean, median, mode, and/or range of a data set.  A 

sample data analysis task read “Find the median and mode(s) of the data set 

4,6,5,4,4,5,4,8”.  Students could earn up to 25 points on the unit test.  Internal 

consistency was found to be acceptable, ρ = .82.    

Procedure 

All sixth-grade students received mathematics instruction in the same classroom 

resulting in an identical classroom layout and equitable access to materials (e.g., 

textbooks and manipulatives) across sections.  During the teaching experiment, the first 

author became the instructor in one classroom while the classroom teacher continued 

her instruction in the two comparison classrooms.  The classroom teacher was not 

present in the intervention classroom during the study. 

Data collection. The pretest and posttest were administered during students’ 

regular mathematics class approximately one month apart.  The instructor read the 

directions aloud to students prior to beginning the measure.  Most students needed 30 

minutes for the problem-solving measures.  The classroom teacher administered the 
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unit test, which took approximately 60 minutes to complete, in all three sections.  A 

mathematics educator not affiliated with the study observed instruction, videotaped 

lessons, and took fieldnotes in both classrooms on three randomly selected occasions 

during the second, third, and fourth week of instruction.  These data were used to 

develop a description of the instruction in each of the classrooms.  

Instruction: Standards, tasks, and questions.  The following four sixth-grade 

benchmarks from the Next Generation Sunshine State Standards (NGSSS; Florida 

Department of Education, 2007) selected by the classroom teacher were the focus of 

instruction during the present study: 

• MA.6.A.2.1 Use reasoning about multiplication and division to solve ratio and rate 
problems 

• MA.6.A.2.2 Interpret and compare ratios and rates   

• MA.6.S.6.1 Determine the measures of central tendency (mean, median, and 
mode) and variability (range) for a given set of data 

• MA.6.S.6.2 Select and analyze the measures of central tendency or variability to 
represent, describe, analyze and/or summarize a data set for the purposes of 
answering questions appropriately.  

Lessons in the intervention classroom conducted during block scheduled periods 

tended to follow this order: (1) check homework, (2) discuss issues related to 

homework, (3) complete introductory task, (4a) individual work on one problem, (4b) 

examine the problem with a partner or in a small group, (4c) discuss the problem with 

the entire class, and (5) and complete a concluding activity meant to stimulate 

reflection.  Rich tasks help students see that mathematics is connected (Stein & Smith, 

1998). In this manuscript, we use the terms problem and rich task synonymously 

because the problems aimed to promote connectedness within mathematics and were 
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sufficiently complex that they addressed features of high cognitive demand as 

expressed in Stein and Smith’s cognitive demand framework. 

A brief outline of the process used to adapt problems from textbook tasks is 

provided here but a more detailed description of the process may be found in Author 

(2012/2013).  Creating word problems for each lesson began by examining the state-

level standards and considering the mathematical relationships between them.  Next, 

the instructor reflected on ways to turn tasks from these resources such as their 

textbook (Larson & Boswell, 2010) into open-ended and complex word problems that 

drew on realistic contexts.  Students were consulted about their interests and 

experiences to learn about contexts they perceived as realistic.  The instructor explored 

the textbook and other classroom resources for tasks.  Typically information was added 

to the textbook tasks to make it realistic.  Finally, additional questions that required 

higher-level reasoning skills such as analysis and evaluation were included.  A sample 

problem is shown in Appendix B. 

Data Analysis  

Students’ performance on the pretest and posttest was scored as correct or 

incorrect and a sum was calculated.  The researcher and a second coder randomly 

selected 20% of the tests and scored them independently.  Interrater agreement was 

100% (rwg = 1; James, Demaree, & Wolf, 1984).  The two coders scored the remaining 

80% of the tests after reaching satisfactory interrater agreement.  The classroom 

teacher scored the unit tests for the three sections.  Each response was scored as 

correct or incorrect and was equally weighted. 

A repeated measures t-test was used to determine whether the intervention 

improved students’ problem-solving performance.  The second research question was 
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examined using ANCOVA to investigate differences between groups’ problem-solving 

performance using the pretest as a covariate.  Since the groups were similar in terms of 

their demographic characteristics and the sample size resulted in limited power to test 

effects, demographic data were not included as covariates.  The third research question 

examined differences between the intervention and comparison students’ content 

knowledge as measured by the unit test.  Data were analyzed using ANCOVA with the 

students’ fifth-grade standardized mathematics score as a covariate.  

Assumptions related to normality, homoscedasticity, linearity, and 

multicollinearity were also investigated.  Results from examining the residual plots and 

statistical analyses provided sufficient evidence to justify use of ANCOVA.  When there 

was a significant difference between groups, partial η2 was calculated to examine the 

size of the effect.  

Results 

A Description of TTPS  

A description of typical TTPS instruction in this study based on an examination of 

the videotapes and fieldnotes is provided to frame the instructional intervention and 

students’ outcomes.  Excerpts of classroom dialogue are provided to contextualize 

instructional aspects.  Vignettes from three instructional days that exemplify unique 

aspects of the TTPS instruction implemented in this study are shared to frame the 

intervention.  

Classroom environment.  Two posters that reflected the expectations for 

classroom processes and questions students were to ask one another while solving 

problems were displayed in the classroom (see Appendix C).  An agenda that indicated 

tasks to accomplish at the beginning of class as well as objectives for that day was 
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projected daily.  Students usually checked homework first and then began an 

introductory task.   

Checking homework.  Students examined their homework on their own and 

were asked to consider tasks, procedures, or concepts for discussion.  After five 

minutes, students were asked to indicate homework tasks they wanted to review, and 

the instructor invited students to discuss these questions (e.g., “Does someone have 

ideas about this problem?”).  One student was selected to explain his or her approach 

to solving the problem.  Students frequently described aspects of the problem that were 

critical features for solving it.  After this explanation, the instructor asked the student 

who originally posed the question whether it was resolved (e.g., “Does that make 

sense?”  ”Would you like him/her to describe it in another way?”).  The instructor 

followed up by probing students for other ways to solve the same problem—typically 

one student shared an alternate representation or process.  This continued until 

students’ questions about the homework were resolved, which typically took 10 to 15 

minutes. 

Introductory task.  Following the homework discussion, the instructor reminded 

students to complete an introductory task, which was projected on the front whiteboard.  

Students usually completed it in 10 minutes or less.  The instructor interacted with 

students one-on-one during this instructional part and asked them to share their 

thinking.  Peers were selected to share their thinking based on Smith and Stein’s (2011) 

suggestions for fostering productive classroom mathematics discussions: (a) complexity 

of students’ ideas, (b) whether their solution strategies were concrete or abstract, and 

(c) the correctness of their answer.   
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Problem.  Following the introductory task, the instructor posed a question and 

students’ preferences that were related to the context of the problem the students would 

examine during class (e.g., “What was the name of the last restaurant where you ate 

pizza?”).  Multiple students mentioned several local restaurants that they would later 

see within the context of the problem, and some shared their pizza preferences.  Many 

shared that the cheapest pizza was not necessarily the best value.  The instructor 

elaborated that the problem they would solve involved investigating pizza prices from 

various local establishments and distributed individual copies of the problem (see 

Appendix B).   

The students were initially encouraged to work independently for a few minutes.  

Students were reminded that they could collaborate on the problem after working 

independently.  Students usually spent five to 10 minutes on their own before forming 

small groups.  When the instructor announced that independent work time was over, 

students formed pairs or triads on their own.  After discussing the problem’s context and 

goal, students discussed how to solve it.  Small-group work typically began with peer-to-

peer questions, such as “What do we need to do?” and “What do you think about this 

[problem]?”.  For example, one student in a group of three started the conversation 

about the pizza problem with a question and then a second student proceeded to read 

the problem and share a goal. 

S1: What’s the goal of the task?  
S2: [Reads task aloud.] What is the best value for a pizza?   
S1: We have to find out how many slices there are.  [Points to data in table.]  
S3: It says costs of…  
S2: [Pause while S1 and S3 reread problem. S2 works independently.] I found the 

lowest price!    
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At times, students challenged each other to justify their ideas (e.g., “Why are you doing 

that?”).  With regard to this problem, groups of students shared that the best value for 

one pizza may not necessarily be the least expensive pizza.  After agreeing on a 

mathematical representation, they carried out a set of procedures and interpreted the 

result.  Students continued to share ideas in small groups for 15-25 minutes depending 

on the problem’s complexity.  During small-group work, the instructor walked around the 

classroom observing students’ work and responding to requests for assistance with 

questions such as “What do you think you’re supposed to do?” and “What do you think 

is important in the problem?”.  The class reconvened to discuss the problem when most 

students were finished. 

The instructor began the whole-class instruction by posing an open-ended 

question such as “What is going on in this problem?” or “What do we need to find?”.  

Presenters typically discussed their mathematical representation, procedures used to 

solve the problem, thoughts about their problem solving, and answer.  Some transcribed 

their work onto the whiteboard located at the front of the room whereas others used the 

document camera to project their work to frame their discussion.  During another class 

session, students investigated a problem that aimed to answer the question “What type 

of music is preferred by students in the sixth grade?”.  Students and the instructor 

discussed that preference could result in multiple types of music given the shape, 

center, and spread of the data.  In the following excerpt, the instructor asked students to 

share their problem-solving actions about a problem they had worked on the previous 

day.  The problem read: 

This year, the school band decided to poll all 330 middle school students about 
their favorite kind of music. The kind of music that is liked by more than 20% of 



ENCOURAGING SIXTH-GRADE STUDENTS 19 

the students will be played at the spring concert.  Forty-two students liked 
country music, 110 preferred pop music, 13 voted for rap, 127 said music from 
TV shows like High School Musical, and 38 students tend to listen to rock.  The 
band director wants a meaningful data display, an answer to her question, and 
for you to describe the (1) spread of the data and (2) whether there are any 
outliers.  
  

T: What did you do [to solve the problem]? 
S1: Highlighted and underlined and drew a little thing [bar graph].  There were five 
categories that people could vote for, so I split it up into categories and all the students 
and then that’s. Since I knew how many students I had, then I started, I set that up and 
it easily laid it out for me so that I could start solving the problem. 
… 
T: Did anyone do it differently? 
S2: I was going to do something different but then it didn’t work out.  What I was going 
to do is first make a bar graph so I can compare how many people like what.  Do you 
want me to draw a bar graph on my paper so you can see it? 
T: Yeah, why don’t you do that and then we can come back to you.  
 

The instructor routinely encouraged students to share their ideas so the entire class 

might further explore and critique them.  They were given data, asked to analyze it, and 

to determine the type of music that should be played at the next school dance, which 

might include multiple types if the data supported that conclusion.  After individual think 

time followed by time for sharing ideas in pairs, the class reconvened to talk about their 

problem solving.  The following excerpt starts after one student shared his thinking 

about the problem and had returned to his seat.   

T:   Did anyone do it [the problem] differently? 
S1: [Walks to document camera and slides paper underneath it.] What I did was, if you 

see like this (points to projection) I put three hundred and thirty up there and then I 
put them up into those [genres of music]. 

S2: Forty-two divided by 330 because that’s how you get percent, and I did that for each 
of them. And then for each of the percents, I either had to round up or round down.  
Like this one, you had to round up because that’s a seven and seven is bigger than 
five, so you round up. …I found which ones were higher than twenty percent 
because it said on this side.  The kind of music that is liked by more than twenty 
percent will be played.  But I had a problem because … there were two that were 
bigger than twenty and I didn’t really get that. … the outliers are 127 kids that like 
TV music and 13 kids that like rap. That’s what I did.  
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T:   Is it possible that more than one type of music might be liked by more than 20% of 
students? [Several students nod affirmatively.]  What do you think about her idea 
that she shared?  [Several students nod affirmatively followed by a pause for the 
student to return to her seat.]  Did anyone else do it differently? 

S3: Well I think, you figure out how to divide 330 into 100, how to make 330 one 
hundred by dividing and then take that number, divide each of the categories and 
then you have a percent.  

S4: You take 330 and then figure out what you need to do.  What you need to divide by 
to make it 100 and then you take that number and divide each of the number of kids 
by that number and you get a percent because it’s out of 100. 

 

This discussion is evidence of how students decontextualized the information from the 

problem, manipulated the quantities to answer the question, and wrestled with 

contextualizing the result as it related to the question.  

During these lessons, the instructor frequently asked whether students had 

questions about the student’s presentation, which usually resulted in a couple of 

student-initiated questions.  Some asked for assistance (e.g., “Can you explain it 

again?”) whereas others posed more probing questions (e.g., “Why did you do it that 

way?”).  After one presentation concluded, students were asked to offer another 

mathematical model or strategy related to the problem.  At least one student presented 

a viable model or alternate strategy for each problem.  Students and the instructor 

ended the discussion when students’ questions were answered and the classroom 

community felt (a) the problem was solved and (b) at least two distinct approaches (i.e., 

different representations, procedures, or combination of both) had been shared.  Thus, 

some instructional decisions (e.g., ending a discussion) were jointly made by both the 

teacher and students.  Following this discussion, students agreed on what music should 

be played at the dance.  The whole-class discussion usually took 20-25 minutes. 
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Finally the instructor synthesized students’ work and offered a summary of 

concepts, models, and analytic techniques that came up while solving the problem.  

Mathematics topics were often the focus of the synthesis.  For example, the instructor 

shared how the range of a set of numbers provided different information about a data 

set than measures of central tendency.  Students occasionally added to the instructor’s 

synthesis and offered what they learned from solving the problem.  The individual, 

small-group work time and whole-class discussion usually lasted 40-65 minutes.  

Closure. During the last five minutes of class, concluding activities such as exit 

slips, reexamining introductory tasks, and writing summaries of the lesson were 

completed.  One closure activity, from a class meeting different from the previous two 

discussed earlier, required students to share their ideas about statistical terms.  The 

instructor asked students to define the word “cluster” after an earlier lesson.  Many 

students commented that they were uncertain how best to characterize clusters of data.   

S1: Clusters, it’s a group or a pack. 
S2: A bunch of things together.  
S3: Say like in a number line, there’s a bunch of numbers around five, six, and seven 

and there’s like nothing for awhile, and then there’s 19, 20, 21 it’s just like, there’s a 
lot of stuff in one area. 

T:   Okay, so, what do you think is an example of cluster?   
S1: Well, to me, clusters are like groups.  I would think of it like a pack of wolves.  Like 

six and two packs of wolves, how many wolves are there? 
S4: I’m sorry. I kind of disagree with your definition of it because this is talking about 

data and so groups can also mean like say there’s a cluster of people who drive to 
school that are 18 or 19 and then there’s less around 16. 

 
As evident in this example, students shared and challenged each others’ ideas.  

Materials such as summaries stayed in students’ notebooks whereas exit slips were 

handed to the instructor as students left the room.   

Problem-Solving and Unit Test Performance 
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A repeated measures t-test was conducted to answer the first research question: 

What is the impact of the intervention on students’ performance on a test of word 

problems?  Students in the intervention group performed better on the problem-solving 

posttest than the pretest, t(17) = 2.65, p = .02, d = .48 whereas their peers in the 

comparison group did not improve, t(39) = 0.52, p = .61 (see Table 6).  

INSERT TABLE 6 ABOUT HERE 

A one-way ANOVA was used to investigate the second question: Does 

performance on a test of word problems differ between students from the intervention 

and comparison groups?  There was no significant difference between the intervention 

and comparison groups’ pretest problem-solving performance, F(1, 56) = 2.01, p = .16.  

ANCOVA was employed to examine the relationship between posttest problem-solving 

performance and group status while holding pretest problem-solving performance 

constant.  Students in the intervention group performed better than their comparison 

group peers (Mint = 2.83, SDint = 1.34; Mcom = 1.73, SDcom = 1.28; F(1, 55) = 77.84, p < 

.005, d = .84) (see Table 7).   

INSERT TABLE 7 ABOUT HERE 

Intervention status was uniquely associated with 13% of the total variance in posttest 

performance.  Pretest performance and intervention status explained 72% of variance in 

students’ performance on the posttest.  

Finally, students’ performance on the unit test was examined to answer the third 

research question: Does performance on a teacher-constructed unit test following TTPS 

instruction differ between students from the intervention and comparison groups?  

Mathematics FCAT sores were used as a covariate in the relationship between 
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intervention status and unit test performance.  Initial ANCOVA results indicated that the 

covariate was not significantly related to posttest scores; therefore a one-way ANOVA 

was performed.  There was a significant difference in the groups’ mean scores on the 

unit test favoring the comparison group, F(1, 55) = 8.27, p < .005, d = .79 (see Table 8).   

INSERT TABLE 8 ABOUT HERE 

The comparison group had a higher average score than the intervention group (Mcom = 

19.79, SDcom = 3.07; Mint = 17.11, SDint = 3.69).  Similar to the problem-solving results, 

intervention status was uniquely associated with 13% of the variance in students’ 

content knowledge.  

Discussion 

Findings from this study were both consistent and inconsistent with prior 

problem-solving research and offer information about the impact of TTPS as part of 

typical daily instruction during one sixth-grade mathematics unit.  Intervention 

participants successfully answered more problems on the posttest than the pretest 

whereas their peers did not, much like the results from prior problem-solving 

explorations.  The intervention group showed better problem-solving performance than 

the comparison group after one month of the instructional intervention.  This finding is 

consistent with all of the past research on problem-solving instruction (e.g., Charles & 

Lester, 1984; Verschaffel & De Corte, 1997).  Problem-solving test items were not 

explicitly constructed on the topics explored during the study.  These findings provided 

evidence that TTPS supported students’ problem-solving performance, regardless of 

the content embedded within problem-solving measures.  Students showed some ability 

to transfer their experiences from the intervention period to problem-solving items that 

required students to draw on other mathematical concepts and procedures.  One key 
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finding of this study was that enacting TTPS instruction on a daily basis in a fashion 

described here led to improved problem-solving outcomes even after a short time 

period.   

A second key finding is that the TTPS approach enacted in the present study did 

not help students respond correctly to unit-specific test items as much as typical 

teacher-led explicit instruction delivered by the comparison teacher.  This is inconsistent 

with research on problem-solving instruction.  Students experiencing problem-solving 

instruction tend to outperform their peers experiencing explicit instruction (Sigurdson et 

al., 1994; Verschaffel et al., 1999).  We take up this inconsistency more critically here 

through examination of two possible factors with an aim to stimulate thinking about the 

role of mathematics teaching, mathematical problem solving, mathematics content 

learning, and their interactions.  

Realistic Tasks 

The rich tasks in the intervention classroom provided a context for students to 

discuss mathematics content and procedures and engage in problem solving.  The use 

of open, complex, and realistic word problems during instruction may foster cognitive 

links between students’ prior knowledge (e.g., their mathematical knowledge and 

knowledge gained from experiences in the community; Boaler, 2002; Boaler & Staples, 

2008; Palm, 2008).  A word problem is realistic if its elements account for conditions in 

and out-of-school settings (Palm, 2006).  Problems about local weather, pizza prices 

from local restaurants, and movie watching habits of local households provided a 

context for students to use their real-world knowledge in conjunction with their 

mathematics knowledge.  Many authors (e.g., Author, 2013; Boaler, 1993, 2002; Boaler 
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& Staples, 2008; Palm, 2008) have argued that realistic problems encourage children to 

draw on their knowledge from nonacademic situations, which may help them solve 

problems using novel approaches.  On the other hand, some suggest that 

socioeconomic class strongly influences how students solve problems, which may limit 

their performance on realistic problems (e.g., Cooper & Dunne, 2000).  In one study, 

students from lower socioeconomic households did not perform as well as their middle 

socioeconomic peers on items drawing upon realistic contexts (Cooper & Dunne, 2000). 

We cannot provide support for either argument about the influence of realistic problems 

due to low statistical power but we acknowledge that what may be realistic to one 

individual or group may not be realistic to another.   

Pedagogy and Mathematics Learning 

This study investigated students’ performance on unit-specific mathematics items 

after experiencing TTPS.  The average unit test score from the comparison group was 

approximately two points higher than the intervention group and we explore some 

potential explanations here.   

First, it is possible that explicit instruction that focused on learning procedures 

may have been a critical element linked to students’ unit-test performance.  

Mathematics procedures were not made explicit during instruction within the 

intervention classrooms.  Intervention students might have needed assistance 

abstracting mathematics procedures from the problem-solving experience and time 

spent practicing them, which may be a crucial element for supporting students’ 

academic growth when employing TTPS.  Davis (1992) suggests that teachers “should 

start with problems or tasks, and as a result of working on these problems…a residue of 



ENCOURAGING SIXTH-GRADE STUDENTS 26 

mathematics…is what you have left over after you have worked on problems” (p. 237).  

The mathematical residue includes the procedures specific to solving a particular task, 

which may not have been explored adequately in the study’s lessons.  Students need 

opportunities to practice employing procedures to solve mathematics tasks.  Thus, 

students’ procedural knowledge growth might not have been sufficiently supported 

through the TTPS instructional approach enacted in this study, which might account for 

the differences in unit test scores. 

Second and related to the first issue, students may be used to teacher-led 

explicit instruction and be unfamiliar with abstracting procedures from a problem.  This 

has been documented in prior research (see Arbaugh, Lannin, Jones, & Park-Rogers, 

2006; Henningsen & Stein, 1997).  Students in the intervention classroom might have 

needed more time (e.g., four months) to acclimate to this instructional approach.  A third 

explanation is that comparison students may have also been more prepared than their 

intervention peers for the types of questions found on the unit test.  That is, the 

comparison teacher routinely administered tasks associated with the textbook materials.  

Daily assessment and instruction in the intervention classroom involved complex, 

realistic, and open-ended word problems, which were not found on the unit test.  

Intervention students’ lower scores on the unit test compared to their peers may be 

influenced by a misalignment between daily mathematics instruction and that measure.  

A similar argument might be constructed with the problem-solving performance 

differences and intervention students’ day-to-day engagement in problem-solving tasks.  

Future research could provide more valid evidence about students’ mathematics 
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knowledge if both groups completed a unit test with both exercises and complex, 

realistic, and open-ended word problems.  

Problem-solving Instruction 

 This study sheds light on a relevant instructional question: How might teachers 

teach mathematics content within problem-solving contexts?  The results extend prior 

problem-solving studies by demonstrating that enacting TTPS on a daily basis within a 

supportive learning environment promoted better problem-solving performance than 

teacher-led explicit instruction. This study is further evidence that blending problem 

solving and mathematics instruction to achieve positive problem-solving and content 

knowledge outcomes is difficult.  This statement, by itself, is not necessarily novel to the 

mathematics education field; however, the way the problem-solving instruction was 

conducted within the classroom was different from prior studies.  Previous studies 

discussed earlier used a TTPS instructional approach sporadically (e.g., 20 times over 

four months) whereas the present investigation sought to examine students’ outcomes 

after employing TTPS everyday.  Hence the present findings extend the mathematics 

education field’s knowledge base regarding students’ outcomes from problem-solving 

instruction.   

Students need instructional time to develop greater procedural fluency through 

exercises just as they need problem-solving experiences.  This instantiation of problem-

solving instruction, which did not allow students as much practice with procedures, may 

have limited their development of procedural fluency.  Students needed time to practice 

procedures after using them within the problem-solving context.  We conclude that 
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teachers must make procedures (and practice with them) an explicit part of problem-

solving instruction.  

Limitations and Future Directions 

This quasi-experimental mixed-methods study had limitations that impact the 

findings’ generalizability.  One limitation was that the sample size affected the statistical 

power of this study.  A second limitation was evidence related to permanence of the 

intervention outcomes.  This limitation arises in much of the past research on problem-

solving instruction (e.g., Sigurdson et al., 1999; Ridlon, 2009; Verschaffel et al., 1999) 

and ought to be explored in a systematic fashion.  A third limitation of this teaching 

experiment was an inability to randomly assign individual participants to each group.  

Statistical analyses suggested that the groups were similar in many aspects albeit this 

does not meet the randomized control assignment standards.  The goals of this 

exploratory study were met; however, future investigations ought to draw on more 

students, sections, and teachers in order to explore the role of demographic variables in 

students’ outcomes.   

With two comparison classrooms and one intervention classroom, it was not 

possible through quantitative analyses to separate the effects of the instructor, 

intervention, and classroom.  Future researchers might consider two classroom 

teachers conducting instruction in two classrooms in order to better separate the 

classroom and intervention effects and gain greater ecological validity evidence.  A 

related question arises from the results: Might differences in instructors’ content, 

pedagogical, and/or pedagogical content knowledge account for students’ varied 

performance on the tests?  Prior research suggests these bodies of knowledge likely 
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impacted students’ outcomes (e.g., Ball, Thames, & Phelps, 2008; Carpenter, 

Fennema, Peterson, & Carey, 1988).  The instructor is a critical aspect of the 

intervention and there were some differences and similarities between instructors (see 

Table 9).   

INSERT TABLE 9 ABOUT HERE 

The instructor of the intervention group was a mathematics education doctoral student 

who taught elementary (i.e., grades K-6) mathematics methods courses over multiple 

semesters and previously taught in the middle grades (i.e., grades 6-8).  The classroom 

teacher held a master of education degree and had been teaching middle grades 

mathematics at the school for approximately five years.  The differences in the instructor 

and teacher’s mathematical and pedagogical content backgrounds may have influenced 

the format and content of the instruction.  This uncertainty could be resolved through a 

broader examination of the intervention across sections and instructors.  

Summary 

Enacting TTPS on a consistent basis during one mathematics unit was linked to 

both positive and negative outcomes for sixth-grade students.  This study described an 

instantiation of TTPS during one unit and provided evidence that TTPS positively 

impacted students’ problem solving.  TTPS as enacted in this study, which placed little 

emphasis on solving exercises and developing procedural fluency, might not support 

students’ mathematics content knowledge as measured by a unit test.  The findings 

from this study suggest that TTPS should be supplemented with teacher-led explicit 

instruction rather than replace it as done in the present investigation.  This conclusion is 

not contradictory to our results.  Prior studies supplemented explicit (or otherwise) 

instruction with TTPS; results from them indicate that students had better problem-
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solving and achievement outcomes than peers experiencing explicit instruction only.  

Further research is needed to explore other ways to implement TTPS, frequency of 

implementation (e.g., daily versus sporadically), and students’ outcomes from those 

experiences.   

This exploratory teaching experiment characterized one way that TTPS might 

occur.  Prior investigations provided guidance for this instructional intervention but 

TTPS had not been delivered on a regular basis during a typical classroom duration and 

did not draw on state or national standards.  The present study provides new evidence 

regarding the effects of TTPS and a description of TTPS instruction.  In response to the 

first research question, intervention participants became better problem solvers as a 

result of daily TTPS.  Intervention students had significantly better problem-solving 

performance than their peers in the comparison group after the intervention period.  

Finally, the comparison group did better than the intervention group on the unit test, 

responding to the third research question.  This study provided evidence about 

students’ problem solving and content knowledge following daily TTPS instruction, 

which future researchers might explore in the era of accountability and CCSSM.  For too 

long, problem solving has been treated “as an isolated topic akin to algebra or 

geometry.  We need better integration of problem solving within all topic areas across 

the mathematics curriculum” (English & Sriraman, 2010, pp. 267-268).  If a goal of 

mathematics instruction is to develop competent problem solvers who are able to solve 

realistic problems then teachers might consider supplementing their daily instruction 

with some form of TTPS to improve students’ problem-solving performance.  
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Appendix A 
 
1) Ruth is planning to serve ice cream sundaes to guests at her birthday party.  She 
purchased 3 flavors of ice cream: vanilla, chocolate, and strawberry, 2 different sauces: 
chocolate and caramel, and 4 different toppings: bananas, nuts, sprinkles, and whipped 
cream.  How many different types of sundaes can be made if every guest selects only 
one ice cream flavor, one type of sauce, and one topping? 
 
2) A group of 150 tourists were waiting for a shuttle to take them from a parking lot to a 
theme park’s entrance.  The only way they could reach the park’s entrance was by 
taking this shuttle.  The shuttle can carry 18 tourists at a time.  After one hour, everyone 
in the group of 150 tourists reached the theme park’s entrance.  What is the fewest 
number of times that the shuttle picked tourists up from the parking lot? 
 
3) Aunt Marie purchased 80 Silly Bandz for her two nephews Elijah and Jordan.  She 
gave Elijah 10 more Silly Bandz than Jordan.  How many Silly Bandz did Elijah and 
Jordan each receive? 
 
4) A family is planning a camping trip to a national park and receives the following 
information about the costs per day:   
Camping Fee  
     Children 12 years and younger  $3.00 per day 
     All others  $7.00 per day 
  
Parking for trailer $9.00 per day 
  
Use of common areas  $1.50 per person per day 
 
The family will camp for 10 days and need to park their trailer each day.  The family 
consists of 4 people including a father, mother, 8 year-old child, and a 14 year-old child.  
Each person will need to use the common areas on a daily basis.  How much will they 
pay for their camping trip? 
 
5) Maria wanted a bicycle so she started saving all of her money.  For every $6.00 that 
Maria saved, her mother gave her $2.00.  Maria had $56.00 after three months.  How 
much money did Maria’s mother give her?  
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Appendix B 
 

Southernville Pizza 
 

Directions: Use your knowledge of ratios, rates, unit rates, data representations, and 
data analysis to answer the questions below.  Please show all of your work for every 
problem-solving step. Create a math model and use a strategy to find the result for each 
question.  Carry out your work here and use the back of the paper, if needed.  Answer 
all questions in complete sentences that fully justify and explain your solution.  
 
The city of Southernville has many places to purchase a pizza.  Jeremy decides to 
create a website to provide residents with information that may help them decide where 
to purchase their pizza.  The following data provide the cost of a cheese pizza, a 
pepperoni pizza, a large pizza with five toppings, the diameter of a large pizza, and the 
number of slices on a large pizza: 
 

Pizza 
Restaurant 

# of 
Slices on 

Large 
pizza 

Diameter of 
Large Pizza 

(in.) 

Cost of 
Large 

Cheese 
Pizza 

(dollars) 

Cost of 
Large 

Pepperoni 
Pizza 

(dollars) 

Cost of Large 
Pizza with 5 

Toppings 
(dollars) 

Pizza Hut 8 14 10.00 10.00 10.00 

Papa Johns 8 14 8.99 9.99 12.99 

Domino’s 8 14 9.99 7.99 15.06 

Five Star 8 14 8.99 10.49 12.99 

Leonardo's 8 14 8.75 10.95 16.50 
Hungry 
Howie’s 8 14 10.55 12.95 16.05 

Pizza Vito 8 14 10.95 12.70 19.95 
 

Q1: Create a data representation that Jeremy might display on his website to help 
customers decide on what pizza to buy from a restaurant.  
Q2: Write a letter describing the best value for a pizza that your family might be 
interested in purchasing.  Write in a way that a 6th grade student might understand.  

 
***Check your work with one other person or another group of people. If they 

have something different, write it in pen near your answer because we will 
discuss them later.*** 
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Appendix C 

A guide to the six stages of problem solving 

1. Reading the problem.  
a. Did you read the entire problem?  
b. Were there any words that you need help understanding? 
c. Do you understand what you are supposed to find? 

 
2. Describing the situation 

a. What is happening in this problem?  
b. Can you represent the situation presented in the problem?  

 
3. Creating a mathematical model 

a. What information is necessary to solve the problem? 
b. What information is unnecessary to solve the problem? 
c. Think about whether this problem is similar to others you have seen 

before.  
d. Is there more than one way to begin solving this problem? 

 
4. Using a strategy and finding the result. 

a. Think about some possible strategies and choose one that will work with 
what you created in the previous stage. 

b. Look at your work thus far. Did you make any mistakes with your 
arithmetic or carrying out the strategy? 

c. Does your result make sense when you look at your mathematical model? 
 

5. Interpreting your result 
a. What are the units for your result? 
b. Does your result answer the original question?  
c. Does your result fit with your situation? Is it a realistic answer? 

 
6. Reporting your answer 

a. Did you write a sentence that clearly answers the question with the final 
solution? 

 

** Is there another strategy that might answer the problem? Does your strategy use 
different steps to calculate the result? ** 
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Table 1. Demographic information for participants 

  Intervention Group a Comparison Group b 

  Number (Percent) Number (Percent) 

Ethnicity   

White 11 (.61) 20 (.50) 

Hispanic 3 (.17) 11 (.28) 

African-American 3 (.17) 6 (.15) 

Multiracial 1 (.03) 2 (.05) 

Asian-American 0 (0) 1 (.02) 

Gender   

Male 7 (.39) 18 (.45) 

Female 11 (.61) 22 (.55) 

Free-or-Reduced Lunch   

Yes 5 (.28) 7 (.18) 

No 13 (.72) 33 (.82) 
a N = 18; b N = 40 
 
 
Table 2. Group means and standard deviations related to fifth-grade FCAT scores 

 Intervention Group a Comparison Group b 

 Mean (SD) Mean (SD) 

Reading Scale Score a 330 (36) 340 (45) 

Mathematics Scale Score a 350 (32) 354 (33) 
a N = 16; b N = 37 
 
 
 
Table 3. Item information for pretest 

  Infit Outfit 
Item 

# 
Mean 

Square ZSTD 
Mean 

Square ZSTD 

1 0.99 0 0.9 -0.2 

2 0.99 -0.1 0.94 -0.4 

3 1.02 0.2 1.14 0.6 

4 0.78 -1.7 0.67 -1.4 

5 0.94 -0.4 0.94 -0.2 
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Table 4. Item information for posttest 

  Infit Outfit 
Item 

# 
Mean 

Square ZSTD 
Mean 

Square ZSTD 

1 1.26 2 2.03 2.2 

2 0.93 -0.7 0.83 -1.1 

3 1.01 0.2 0.99 0 

4 1.04 0.4 1.04 0.3 

5 0.8 -2.3 0.67 -2.2 
 
 
 
 
 
Table 5. Item difficulties for problem-solving measures  

  Item difficulty 

Item # Measure Model Std. Error 

Pretest   

  1 -0.92 0.12 

  2 0.34 0.11 

  3 0.82 0.12 

  4 0.85 0.12 

  5 0.74 0.12 

Posttest   

  1 -0.96 0.12 

  2 0.29 0.1 

  3 0.37 0.1 

  4 0.55 0.11 

  5 0.39 0.1 
 
 
 
 
Table 6. Group means and standard deviations related to problem-solving performance 

and unit test performance 

  Intervention Group a Comparison Group b 

Factor Mean Std. Dev. Mean Std. Dev. 

Problem-solving performance.     

Pretest  2.22 1.17 1.66 1.51 

Posttest  2.83 1.34 1.73 1.28 

Unit Test performance 17.11 3.69 19.88 3.07 
a N = 18; b N = 40 
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Table 7. Problem-solving performance results 

 
 

 
 
 
Table 8. Unit test performance results 

Variable a SS df MS F partial η2 

Intercept 16774.74 1 16774.74 1563.39* 0.97 

Intervention Status 88.71 1 88.71 8.27* 0.13 

Residual 590.14 55 10.73     
* p < .005 a N = 57      

 
 
 
Table 9.  Instructor and comparison teacher differences 

Factor Instructor Comparison Teacher 

Years teaching middle school mathematics 3 5 

Mathematics Coursework   

Undergraduate hours 41 3 

Graduate hours 12 0 

Mathematics Education Coursework   

Undergraduate hours 3 3 

Graduate hours 12 0 
 

Variable a SS df MS F partial η2 

Intercept 15.78 1 15.78 22.19* 0.29 

Intervention Status 55.36 1 55.36 77.84* 0.59 

Pretest Performance 5.98 1 5.98 8.41* 0.13 

Residual 39.11 55 0.71     

* p < .005 a N = 58    
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