Communicating Criterion-Related Validity Using Expectancy Charts: A New Approach

Jeffrey M. Cucina
U.S. Customs and Border Protection, jcucina@gmail.com

Julia L. Berger
Bowling Green State University, U.S. Customs and Border Protection, & ProMedica, jlberger@bgsu.edu

Henry H. Busciglio
U.S. Customs and Border Protection, hhbusciglio@aol.com

Follow this and additional works at: https://scholarworks.bgsu.edu/pad

Part of the Industrial and Organizational Psychology Commons, and the Quantitative Psychology Commons

Recommended Citation

DOI: https://doi.org/10.25035/pad.2017.001
Available at: https://scholarworks.bgsu.edu/pad/vol3/iss1/1
COMMUNICATING CRITERION-RELATED VALIDITY USING EXPECTANCY CHARTS: A NEW APPROACH

Jeffrey M. Cucina¹, Julia L. Berger², and Henry H. Busciglio¹

1. U.S. Customs and Border Protection
2. U.S. Customs and Border Protection, Bowling Green State University

ABSTRACT

Often, personnel selection practitioners present the results of their criterion-related validity studies to their senior leaders and other stakeholders when trying to either implement a new test or validate an existing test. It is sometimes challenging to present complex, statistical results to nonstatistical audiences in a way that enables intuitive decision making. Therefore, practitioners often turn to expectancy charts to depict criterion-related validity. There are two main approaches for constructing expectancy charts (i.e., use of Taylor-Russell tables or splitting a raw dataset), both of which have considerable limitations. We propose a new approach for creating expectancy charts based on the bivariate-normal distribution. The new method overcomes the limitations inherent in the other two methods and offers a statistically sound and user-friendly approach for constructing expectancy charts.

Expectancy Charts

Expectancy charts are bar charts that illustrate the relationship between a range of predictor scores, such as personality, and a range of criterion scores, such as job performance. Figure 1 illustrates an expectancy chart for the relationship between ranges of test scores and the percentage of special agents who were rated as superior by their supervisors. For example, of those special agents with test scores of 90 or higher, 43.4% were rated as superior, compared to 3.1% for those with test scores of 69 or lower.

Keywords
Expectancy Charts, Validity, Bivariate Normal Distribution

Imagine that you are a practitioner and have just conducted a criterion-related validity study on a new personnel selection test. Your organization’s top leadership asks for a quick summary of the findings. How would you convey the predictive ability of the test on a single slide in a presentation without having to delve into statistical terminology? In the academic literature, criterion-related validity coefficients are often used as a measure of predictive ability of a test. However, practitioners may find it challenging to translate the meaning of a criterion-related validity coefficient to a nontechnically-savvy audience in a manner that would allow the audience to quickly make informed decisions. We have found expectancy charts to be useful for these purposes. These charts can convey the predictive ability of a test in a single slide with little explanation required.

To help practitioners translate the results of their criterion-related validity studies, we set out to meet the following goals: (a) to describe how expectancy charts can assist personnel selection practitioners in translating complex, technical concepts such as criterion-related validity to nontechnically-savvy audiences and (b) present a new methodology for constructing expectancy charts. We also provide R syntax that practitioners can use to compute more accurate expectancy values. We begin our paper by reviewing existing approaches to creating expectancy charts and highlighting some potential issues with these approaches. We then present our new approach and explain how to implement it in a step-by-step format. We also discuss the inherent assumptions and limitations of our approach and cover some special situations in which it may be used (e.g., multiple-hurdle selection systems).

Julia L. Berger is now at Aptima, Inc and Henry H. Busciglio is now retired. The views expressed in this paper are those of the authors and do not necessarily reflect the views of U.S. Customs and Border Protection or the U.S. Federal Government. The authors would like to thank Philip T. Walm-sley, Kimberly J. Wilson, and Chihwei Su for their valuable comments and suggestions on this article. A portion of this article was presented at the 2016 annual meeting of the Society for Industrial and Organizational Psychology (Division 14 of the American Psychological Association).

Corresponding author:
Jeffrey M. Cucina
Address: 1400 L Street, NW 7S39
Washington, DC 20229-1145
Email: jcucina@gmail.com
Phone: 202-863-6298

http://scholarworks.bgsu.edu/pad/
Thus, expectancy charts allow practitioners to present complex statistical relationships in an easy fashion. As research has long shown, visualizations aid memory and comprehension because they help build mental models, whereas text and numbers do not (Glenberg & Langston, 1992).

Taylor-Russell Table Approach

When deciding to construct an expectancy chart, a practitioner may discover two dominant approaches in the literature. The first approach uses the Taylor-Russell tables to obtain expectancies (Taylor & Russell, 1939). This requires three inputs: the validity coefficient, the proportion of applicants who will be selected top-down based on their test scores, and the base rate proportion of current employees who are satisfactory performers. With these three values, one can use the Taylor-Russell tables to determine the proportion of individuals who will be satisfactory performers if the test is used. For example, if the correlation between a test and job performance is .70, the proportion of satisfactory performers is .50, and the top 20% of applicants will be selected based on their test scores, then the expected proportion of satisfactory performers will increase from .50 to .90 when the test is used. There are some limitations to the Taylor-Russell table approach. These tables only provide expectancies for ranges of test scores that go from a specified test score to the maximum possible score on the test (e.g., 70 or above, 80 or above). Thus, these tables do not provide expectancies for other types of test score ranges (e.g., 70 to 79, 80 to 89). Additionally, the three inputs must be rounded to increments of .05 or .10 when using the tables.

Raw Data Approach

The second approach uses a raw dataset to compute expectancies. In this approach, the predictor and criterion are recoded into groups (e.g., four equally sized groups, or quartiles) or into specific ranges of scores (e.g., 70-79). Next, cross-tabulations are run on the data to obtain the expectancy values. For example, in Figure 1, the raw data for the predictor were divided into four groups (i.e., 69 and lower, 70-79, 80-89, and 90 and higher) and the percentage of employees in each group who were rated superior was recorded. There are two limitations to this approach. First, it cannot incorporate corrections for criterion unreliability and range restriction. It is well recognized in the personnel selection literature that the relationship between an assessment test and performance in a raw dataset is artificially lowered due to these effects (Nunnally & Bernstein, 1994; Schmidt & Hunter, 1996, 1998). Thus, expectancy charts computed using raw data underestimate the relationship between two variables.

Second, unless the sample size of the raw data is very large, there may not be enough cases to accurately compute expectancy values when the data are split into multiple groups. The sample sizes for criterion-related validity studies are often guided by a power analysis for detecting a significant correlation not for splitting the data into different groups. To illustrate the inherent noisiness associated with using raw data to create expectancy charts, we conducted a Monte Carlo simulation. The details and full results on the simulation are provided in the Supplemental Materials. We simulated data for an observed validity of .26, which is the observed meta-analytic value for cognitive ability tests (Hunter, Schmidt, & Le, 2006). We generated 10,000 samples of 151 cases each. With 151 cases, there is a 90% power of detecting a significant correlation. Next, we generated expectancies using the raw datasets. To compute the expectancies, we divided the predictor into five equally sized groups and recorded the percentage of superior performers. We defined superior performers as those within the top 20% on the criterion.

As shown in the Supplemental Materials, the results suggest that there is considerable variability and inaccuracy in expectancy values using raw data. This is due to the sampling error associated with splitting the dataset of 151 cases into multiple groups. The expectancy values varied considerably from sample to sample and the ranges of observed
values were quite large. In the population for our Monte Carlo simulation, the relationship is entirely monotonic, which means that increases in test scores are always associated with increases in job performance. However, in 87.4% of samples, the expectancies suggested that the predictor–criterion relationship was nonmonotonic, meaning that job performance did not always increase with test scores. Even in those samples where the observed validity (.26) turned out to be identical to the true population observed validity (.26), there was still considerable variation in the expectancies, and 88.2% of these samples suggested a nonmonotonic relationship.

A nonmonotonic relationship suggests that higher test scores are not associated with better performance. For example, in one sample that had a validity of .26, the expectancy values for the five equally sized groups of test scores were 16.7%, 9.1%, 26.5%, 20.7%, and 23.3%. This suggests that individuals whose test scores were in the lowest 20% did better than those who were in the next 20%. Further, individuals whose test scores were in the middle 20% outperformed those in the other five groups. Looking at these expectancy charts, a decision maker might assume that the organization should focus hiring on individuals whose test scores were in middle category or that the test is not a consistent predictor of performance. In contrast, the values that should have been obtained are 10.8%, 15.6%, 19.2%, 23.4%, and 31.2%. These values show a clear positive trend and do not paint the false picture that performance goes up and down as test scores increase.

Furthermore, as mentioned before, the raw data approach does not allow for corrections for range restriction and criterion unreliability. To corroborate this, we computed the average expectancy value for individuals who scored in the top 20% on both the predictor and the criterion from the Monte Carlo simulation and obtained a value of 30.2%. Next, using the new methodology that we will soon describe, we computed the expectancy value after making the corrections. The resulting expectancy was 46.0%, which is noticeably larger than the value obtained using the raw data. Thus, using raw data appears to be problematic.

A New Approach to Computing Expectancies
To address the limitations inherent in the Taylor-Russell (1939) and raw data approaches, we developed syntax to compute more accurate expectancy values. This approach uses the bivariate normal distribution, which can be viewed as a three-dimensional bell-shaped graph showing the distribution and relationship between two variables. Information on the mathematical details of our new approach is provided in the Supplemental Materials. Essentially, our syntax computes expectancy values by selecting different sections under the bivariate normal distribution. It is equivalent to computing expectancies using a dataset of enormous size with no criterion unreliability or range restriction.

Our new methodology has several advantages and in many cases improves upon the Taylor-Russell (1939) and raw data approaches. In comparison to the raw data approach, our new methodology allows selection researchers to make corrections for range restriction and criterion unreliability while also reducing the effects of sampling error. Although our approach does not correct for the sampling error associated with estimating validity, it does address the sampling error that is observed in expectancy values when the validity coefficient is held constant. As mentioned above, even when the validity coefficient was .26 in the random samples, splitting the data into multiple categories resulted in expectancy values that varied widely. Because our new approach is equivalent to splitting a dataset of infinite size, it results in no noticeable sampling error when criterion-related validity is held constant. Second, our new approach eliminates the nonmonotonic relationships in expectancy charts that are due to the sampling error associated with splitting up the raw data. Third, unlike the Taylor-Russell (1939) approach, this approach allows for the computation of expectancies for different ranges of test scores. Fourth, it allows for more precision than the Taylor-Russell tables, which only provide expectancies for a subset of all possible input values.

Fifth, this approach allows nonstatistically minded audiences to visualize the relationships between organizational variables (e.g., cognitive ability, job performance, training performance), which aids comprehension and memory (Glenberg & Langston, 1992). We have found that these charts can quickly and easily convey the relationship between test scores and performance to stakeholders, especially when compared to correlation coefficients, regression equations, and scatterplots. As most nonstatisticians are familiar with percentages, only short descriptions of the expectancy chart are needed. An example of a nontechnical explanation is provided in Figure 1. Sixth, it is also possible to create expectancy charts using summary data from published studies. Table 1 displays expectancy charts for some of the most oft-researched relationships in industrial-organizational psychology. To make these charts, we obtained meta-analytic correlations from previous studies and computed expectancies for four equally sized groups (just as in the steps shown below).

Step-by-Step Instructions for Constructing Expectancy Charts
The syntax for our new approach is provided in Table 2, along with annotations explaining each line of code. The syntax uses an algorithm created by Miwa and colleagues (Miwa, Miwa, & Hothorn, 2009; Miwa, Hayter, & Kuriki, 2003) that is implemented in an R package developed by Genz and colleagues (Genz et al., 2008; Hothorn, Bretz, & Genz, 2001). To run the R syntax, researchers should perform the steps shown below. A copy of the output for the example values in the steps below is provided in Figure 2.
Assumptions of the New Approach

We must mention that our new approach to creating expectancy charts makes a number of critical assumptions. The first assumption is that the two variables under study are normally distributed. There is some debate in the literature about the normality of variables (Beck, Beatty, & Sackett, 2014). Thus, it might be beneficial to check for nonnormality. Our syntax could then be applied and the score cutoffs could be transformed back to the nonnormal scale, if desired. If the data are nonnormal and no transformations are conducted, then the expectancy values will not be accurate. This is due to the fact that the algorithm behind our syntax computes the area under a bivariate normal distribution and not the area under a nonnormal distribution.

The second assumption is that the two variables must be linearly related. In general, most test scores tend to be linearly related to performance (Coward & Sackett, 1990), with the possible exceptions of personality predictors (Carter et al., 2014) and self-reported grades (Arneson, Sackett, & Beatty, 2011). Our syntax does not allow for the specification of the nonlinear terms, such as quadratic terms. However, it is possible to linearize the relationship by conducting a multiple regression analysis that includes curvilinear terms and then saving the predicted (ŷ) values. The predicted values would have a linear relationship with the criterion and could be used as the predictor in our new approach. If a nonlinear relationship is present in the data but not considered when running our syntax, then the expectancy values will be incorrect. For example, if the relationship between the predictor and criterion begins to level off near the high end of the range of test scores, then the reported expectancy values for the high end of test scores will be higher than they should be.

Third, our approach assumes that the two variables are on an interval scale rather than an ordinal scale. Typically, individual items on a test or a criterion are on an ordinal scale and total scores are treated as an interval scale (Nunnally & Bernstein, 1994). Thus, if the predictor is a test score and the criterion is a sum total or average of multiple items, both variables can be treated as interval scales, and our approach can be used. However, if the predictor is an individual item such as a single personality item on a 5-point scale and/or the criterion is an individual item such as a single rating of job performance on a 5-point scale, then our new approach may not be valid. In our experience, most predictors and criteria used by practitioners are formed from multiple items, so this assumption may not be violated often in practice. Finally, our approach assumes that corrections for range restriction and criterion unreliability are appropriate. There indeed is some debate on this topic (LeBreton, Scherer, & James, 2014; Shen, Cucina, Walmsley, & Seltzer, 2014; Viswesvaran, Ones, Schmidt, Le, & Oh, 2014). We leave it to readers to decide where they stand on this debate and whether or not to make corrections and which values to apply when using corrections.
TABLE 1. Expectancy Charts for Some of the Most Often Researched Relationships in Industrial-Organizational Psychology

<table>
<thead>
<tr>
<th>Expectancy Chart</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive Ability and Job Perf.</td>
<td>The correlation coefficients used to create these expectancy charts were obtained from Paterson, Harms, and Credé (2012) and Schmidt, Shaffer, and Oh (2008).</td>
</tr>
<tr>
<td>Job Satisfaction and Job Perf.</td>
<td></td>
</tr>
<tr>
<td>Organizational Citizenship Behavior and Job Perf.</td>
<td></td>
</tr>
<tr>
<td>Conscientiousness and Job Performance</td>
<td></td>
</tr>
<tr>
<td>Commitment and Job Satisfaction</td>
<td></td>
</tr>
<tr>
<td>Neuroticism and Job Satisfaction</td>
<td></td>
</tr>
</tbody>
</table>

Note. The correlation coefficients used to create these expectancy charts were obtained from Paterson, Harms, and Credé (2012) and Schmidt, Shaffer, and Oh (2008).
TABLE 2.
Computing the Volume Under the Bivariate-Normal Distribution

<table>
<thead>
<tr>
<th>R script</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expectancyfunc <- function (Validity, PredLowerCut, PredUpperCut, CritLowerCut, CritUpperCut) {</td>
<td>This creates a new function in R called Expectancyfunc. The function takes the criterion-related validity coefficient, the lower and upper cutoffs for the predictor score, and the lower and upper cutoffs for the criterion score as inputs. To represent positive or negative ∞, “Inf” or “-Inf” can be used, respectively.</td>
</tr>
<tr>
<td>library(mvtnorm)</td>
<td>Before proceeding, the mvtnorm library must be downloaded and installed. This command line tells R that the mvtnorm library is being used.</td>
</tr>
<tr>
<td>n <- 1000</td>
<td>A dataset must be created before R can be run to conduct the analyses. This command tells R to create a dataset with 1,000 cases. The value n represents the number of cases and the symbol $<$ indicates that n should be set equal to 1,000.</td>
</tr>
<tr>
<td>mean <- c(0, 0)</td>
<td>In this line, the means for the two variables (which equal 0 when a standardized solution is used) are provided. Note that the values are presented parenthetically, separated by a comma, and preceded by the letter c. This syntax stores the means as a vector in R.</td>
</tr>
<tr>
<td>lower <- c(PredLowerCut, CritLowerCut)</td>
<td>This line assigns the lower z-score cutoffs for the predictor and the criterion to a vector.</td>
</tr>
<tr>
<td>upper <- c(PredUpperCut, CritUpperCut)</td>
<td>This line assigns the upper z-score cutoffs for the predictor and the criterion to a vector.</td>
</tr>
<tr>
<td>corr <- diag(2)</td>
<td>This line creates a 2-by-2 matrix with diagonal values of 1 and stores the matrix in the variable corr.</td>
</tr>
<tr>
<td>corr[lower.tri(corr)] <- Validity</td>
<td>In these two steps, the correlation between the two variables provided by the user is stored into the upper and lower triangles of the 2-by-2 correlation matrix.</td>
</tr>
<tr>
<td>corr[upper.tri(corr)] <- Validity</td>
<td>Here the pmvnorm command in the mvtnorm package is run; this is the command that is used for computing the volume under multivariate-normal distributions. As inputs, pmvnorm takes the upper and lower z-score cutoffs (which are vectors), the vector of means (which is set to 0), the correlation matrix, and the algorithm that is to be used. The algorithm statement specifies that the Miwa et al. (2003) algorithm should be used. The term “(steps = 128)” informs R that 128 grid points should be used. The output for this procedure is the joint probability between the predictor and the criterion – the volume under the bivariate-normal distribution between the lower and upper cutoffs. This probability is saved in the variable jtprob.</td>
</tr>
<tr>
<td>jtprob <- pmvnorm(lower, upper, mean, corr, algorithm = Miwa(-steps = 128))</td>
<td>This line creates a new string variable containing the value of jtprob along with a label. The term “sep=” indicates that there are no text separating the expectancy value and the % symbol.</td>
</tr>
<tr>
<td>print(jtprobOutput)</td>
<td>The previous steps saved the volume of the bivariate-normal distribution and added a label; this step prints that value, with the label, to the screen.</td>
</tr>
<tr>
<td>xprob <- pnorm(PredUpperCut, mean=0, sd=1)-pnorm(Pred-LowerCut, mean=0, sd=1)</td>
<td>To compute the expectancy, we must obtain the proportion of cases that have a predictor value within the lower and upper cutoffs for the predictor. This is accomplished by computing the area under the univariate-normal distribution, which is the proportion of cases having predictor values within the upper and lower cutoffs. The pnorm command in R is used to compute this area and it takes the upper or lower predictor cutoff, mean (which is set to 0), and standard deviation (which is set to 1) as inputs. The proportion of cases that fall within the upper and lower cutoffs is obtained by subtracting the proportion of cases falling between the lower cutoff and $-\infty$ from the proportion of cases falling between the upper cutoff and $-\infty$. This value is stored to a new variable, xprob.</td>
</tr>
<tr>
<td>xprobOutput <- paste("Predictor Probability: ", xprob, sep="")</td>
<td>This line creates a new string variable containing the value of xprob along with a label.</td>
</tr>
<tr>
<td>print(xprobOutput)</td>
<td>This command prints the value xprob to the screen along with a label.</td>
</tr>
<tr>
<td>expectancy <- paste(round(100*jtprob/xprob, 1), "%", sep="")</td>
<td>The expectancy is computed by dividing the joint probability by the predictor probability. The expectancy is converted to a percentage using the syntax “100*” in addition, this value is rounded to one decimal place, using the syntax “round(…., 1).” Next, a percentage symbol is added using the “paste” command, which pastes the expectancy value and the % symbol (shown in the syntax using “%”) together into a string variable named “expectancy.”</td>
</tr>
<tr>
<td>print(expectancy)</td>
<td>This command prints the expectancy value to the screen.</td>
</tr>
</tbody>
</table>
Displaying Confidence Intervals and Corrections in Expectancy Charts

Statistically savvy audiences might inquire about the precision of the expectancy charts for a given study or about the impact of corrections for unreliability and range restriction on the expectancies. To address this, we propose a new format for expectancy charts that can be used to display confidence intervals (CIs) and corrections for unreliability and range restriction. Oftentimes, CIs are displayed on charts (showing mean differences) using error bars. The same approach can be applied to expectancy charts. The uncorrected and corrected correlation coefficients can also be portrayed using a traditional bar chart format. We depict both of these formats in Figure 3. Making corrections for range restriction and criterion unreliability impacts the expectancies. For example, in Figure 3, the uncorrected validity coefficient ($\rho = .511$) indicates that of those individuals whose test score is in the top 25%, a total of 46% are superior performers in training (i.e., in the top 25%). After correcting for range restriction and criterion unreliability, the expectancy value increases to 52%, indicating that the original expectancy of 46% is actually an underestimate of the true expectancy. A format, such as that in Figure 3, can also be used to compare expectancies for the different predictors that an organization is considering for inclusion in a selection system.

Using Expectancy Charts for Multiple-Predictor Selection Systems

It is common to think about expectancy charts as being applicable only to situations when there is a single predictor and a criterion. However, these charts can also be applied to each step in multihurdle personnel selection system provided that the range restriction corrections are made in an appropriate fashion. Consider an organization that has a two-step selection process, consisting of Test A in Step 1 and Test B in Step 2. In this situation, there are really two applicant pools. The first applicant pool consists of those applicants who participate in Step 1 and take Test A. The second applicant pool consists of those applicants who pass Step 1, participate in Step 2, and thus take Test B.

Suppose that the corrected validity for scores on Test A is .50. This is the estimate of what the validity of Test A would be for the first applicant pool if there was no range...
restriction or criterion unreliability. Using our syntax, the expectancy values for the top 20% on the criterion and five equally sized groups of test scores are 4.2%, 10.2%, 16.7%, 25.4%, and 43.6%. Suppose that the corrected validity for Test B scores is .30. This estimate was computed for the second applicant pool, which are the applicants who passed Test A and participated in the second step. Using our syntax, the expectancy values are 9.6%, 14.8%, 19.0%, 23.8%, and 33.1%. Note that the validity of Test B is estimated only for those applicants who passed Test A, and it likely experiences incidental range restriction due to selection on Test A. If Test B were given in the first step, then its validity might be higher due to a lack of incidental range restriction. However, in this example, we are interested in the validity of Tests A and B within the steps in which these are given.

It is also possible to create expectancy charts for a composite score computed using two or more tests. For example, the meta-analytic multiple correlation between a composite of a general mental ability test and an integrity test with job performance is .65 (Schmidt & Hunter, 1998). Using our syntax, the expectancy values for this composite are 1.5%, 6.2%, 13.6%, 25.9%, and 53.0%. Thus, expectancy charts can be used for selection systems consisting of a single test or multiple tests.

CONCLUSION

This paper presents expectancy charts as a useful way to display complex, statistical relationships to nontechnically savvy audiences. It further presented a new methodology for creating expectancy charts and provided a step-by-step guide for implementing this methodology using R syntax. It is our hope that this article will make the creation of accurate expectancy charts easier for practitioners and researchers, and better facilitate the communication of information on the validity of assessments to stakeholders.

REFERENCES

RECEIVED 8/10/16 ACCEPTED 5/10/17
Expectancy Values Using Monte Carlo Simulation

To illustrate the noisiness inherent in the expectancy charts created using raw data, we conducted a Monte Carlo simulation. We simulated data for an observed validity coefficient of .26 (the average uncorrected meta-analytic coefficient for cognitive ability tests reported by Hunter, Schmidt, & Le, 2006) for 10,000 samples consisting of 151 cases (the minimum required for 90% power) each. We then divided the predictor and criterion into quintiles and computed expectancy values using the simulated raw data. Table S1 provides a summary of these results as well as the values that would be obtained using the new methodology that we describe in the paper. We also depict these results in Figure S1a-e, which contains histograms of the five expectancy values for the simulated raw data across the 10,000 samples. The results for the simulated data are shown in blue bars. For reference, we also applied our new approach to computing expectancies to the observed validity coefficients in the 10,000 samples. Histograms for the expectancies from our new approach are shown in Figure S1a-e using red bars. Notice that the distribution of the blue bars (i.e., the expectancies computed using the simulated raw data) are much wider than those for the red bars (i.e., the expectancies computed using our new approach). Overall, the simulated raw data, which necessitate dividing the sample of 151 cases into 25 categories (i.e., 5 predictor score ranges × 5 criterion score ranges) and computing expectancies on the slices, results in unstable estimates.

As shown in Table S1, for the highest quintile (i.e., the top 20% of scores) on the test, the mean observed expectancy value from the simulated raw was 31.2%; however, the observed values ranged from 0% to 65.2%. Given the SD of 8.5%, the 95% confidence interval ranged from 14.2% to 48.3%. In contrast, placing a 95% confidence interval around the validity of .26 (i.e., \(r = .11 \) and .40) and using our syntax approach yielded values of 24.5% and 38.2%, which is about less than half the size of the observed interval. Furthermore, after correcting for range restriction and criterion unreliability, the meta-analytic validity estimate is .54, which yields an expectancy of 46.0% (substantially higher than the observed mean value of 31.2%).

Additionally, we compared the expectancy values for adjacent score ranges on the predictor (e.g., the expectancy values for the lowest quintile and the second lowest quintile were compared). If the predictor and criterion have a linear relationship, the expectancies should have a positive trend going from the lowest test score range to the highest test score range. A total of 87.4% of the samples had at least one pair of adjacent expectancy values (e.g., 13.9% for the lowest quintile and 7.7% for the second lowest quintile) that suggested the relationship between the test and the criterion was non-monotonic. Given past research suggesting that most oft-researched I-O predictors (e.g., cognitive ability tests) are linearly related to performance (with the possible exception of personality measures), the non-monotonicity is an unexpected result.

Finally, we isolated the 485 simulated samples that had an observed validity of exactly .26 (after rounding). The expectancies from these samples also had considerable variability, as shown in Table S1. Thus, even if a researcher is lucky and obtains a point estimate of the validity (.26) that is identical to the true population estimate (.26), there is still considerable variability in the expectancy values (we attribute this variability to sampling error).

Table S1.

<table>
<thead>
<tr>
<th>Quintile 1</th>
<th>Quintile 2</th>
<th>Quintile 3</th>
<th>Quintile 4</th>
<th>Quintile 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowest 20%</td>
<td>Next 20%</td>
<td>Next 20%</td>
<td>Next 20%</td>
<td>Highest 20%</td>
</tr>
<tr>
<td>True Expectancy (r = .26)</td>
<td>10.8%</td>
<td>15.6%</td>
<td>19.2%</td>
<td>23.4%</td>
</tr>
<tr>
<td>True Expectancy (r = .11) (95% confidence interval-lower)</td>
<td>15.9%</td>
<td>18.3%</td>
<td>19.9%</td>
<td>21.6%</td>
</tr>
<tr>
<td>True Expectancy (r = .40) (95% confidence interval-upper)</td>
<td>6.7%</td>
<td>12.6%</td>
<td>18.0%</td>
<td>24.7%</td>
</tr>
<tr>
<td>True Expectancy (\rho = .54)</td>
<td>3.4%</td>
<td>9.2%</td>
<td>16.0%</td>
<td>25.6%</td>
</tr>
</tbody>
</table>

Observed Expectancy Across All 10,000 Samples

<table>
<thead>
<tr>
<th></th>
<th>Quintile 1</th>
<th>Quintile 2</th>
<th>Quintile 3</th>
<th>Quintile 4</th>
<th>Quintile 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>10.7%</td>
<td>15.6%</td>
<td>19.1%</td>
<td>23.4%</td>
<td>31.2%</td>
</tr>
<tr>
<td>(SD)</td>
<td>5.7%</td>
<td>6.7%</td>
<td>7.2%</td>
<td>7.8%</td>
<td>8.5%</td>
</tr>
<tr>
<td>(\text{Min})</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>(\text{Max})</td>
<td>40.7%</td>
<td>47.6%</td>
<td>53.3%</td>
<td>56.0%</td>
<td>65.2%</td>
</tr>
<tr>
<td>95% CI-lower</td>
<td>-0.8%</td>
<td>2.2%</td>
<td>4.7%</td>
<td>7.9%</td>
<td>14.2%</td>
</tr>
<tr>
<td>95% CI-upper</td>
<td>22.1%</td>
<td>28.9%</td>
<td>33.5%</td>
<td>39.0%</td>
<td>48.3%</td>
</tr>
</tbody>
</table>

Observed Expectancy For 485 samples with \(r_{\text{observed}} = .26 \)

<table>
<thead>
<tr>
<th></th>
<th>Quintile 1</th>
<th>Quintile 2</th>
<th>Quintile 3</th>
<th>Quintile 4</th>
<th>Quintile 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>10.6%</td>
<td>15.2%</td>
<td>18.6%</td>
<td>23.1%</td>
<td>31.6%</td>
</tr>
<tr>
<td>(SD)</td>
<td>5.5%</td>
<td>6.3%</td>
<td>6.8%</td>
<td>7.9%</td>
<td>7.4%</td>
</tr>
<tr>
<td>(\text{Min})</td>
<td>0%</td>
<td>0%</td>
<td>3.0%</td>
<td>4.2%</td>
<td>10.7%</td>
</tr>
<tr>
<td>(\text{Max})</td>
<td>31.0%</td>
<td>40.7%</td>
<td>38.9%</td>
<td>45.0%</td>
<td>55.2%</td>
</tr>
<tr>
<td>95% confidence interval-lower</td>
<td>-0.4%</td>
<td>2.6%</td>
<td>5.0%</td>
<td>7.3%</td>
<td>16.7%</td>
</tr>
<tr>
<td>95% confidence interval-upper</td>
<td>21.6%</td>
<td>27.8%</td>
<td>32.2%</td>
<td>38.9%</td>
<td>46.5%</td>
</tr>
</tbody>
</table>
FIGURE S1.
This figure presents histograms of the expectancy values obtained for observed validity coefficients using the raw data approach (shown in blue) and the new approach (shown in red) described in the main paper. Separate sets of histograms are presented for each quintile of test scores.
Mathematical Theory Behind the Bivariate Normal Distribution

The new approach to developing expectancy charts described in the paper takes advantage of the bivariate normal distribution. This section provides more information on the mathematical framework behind the bivariate normal distribution.

A bivariate-normal distribution consists of two normally distributed variables, \(x_1 \) and \(x_2 \), with a correlation of \(-1 < r < +1\) (see Figure S2a-c). When \(x_1 \) and \(x_2 \) are uncorrelated (i.e., \(r_{x_1,x_2} = 0 \)), the distribution consists of a 3-dimensional bell-shaped volume (see Figure S2a). When \(x_1 \) and \(x_2 \) are correlated, the distribution becomes flatter as the correlation increases (Figure S2b-c). Note that when \(|r_{x_1,x_2}| = 1 \), the bivariate-normal distribution is equivalent to univariate-normal distribution since the two variables, \(x_1 \) and \(x_2 \), are perfectly correlated.

It is possible to represent the bivariate normal distribution formulaically. Gatignon (2010) provides the following formula for a bivariate-normal distribution:

\[
\frac{1}{2\pi \sigma_1 \sigma_2 \sqrt{1 - \rho^2}} \exp \left\{ -\frac{1}{2(1 - \rho^2)} \left[\frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} - 2 \rho \frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1 \sigma_2} \right] \right\}
\]

Integration, from calculus, can be used to find the volume under a function (including 3-dimensional functions). The volume under the normal bivariate distribution is represented by the integral shown below. Note that here, the integration occurs on both variables \(x_1 \) and \(x_2 \):

\[
\int \frac{1}{2\pi \sigma_1 \sigma_2 \sqrt{1 - \rho^2}} \exp \left\{ -\frac{1}{2(1 - \rho^2)} \left[\frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} - 2 \rho \frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1 \sigma_2} \right] \right\} \, dx_1 \, dx_2
\]

Vasicek (1998; see also Gupta, 1962) describes the standard process for solving the integral, which is based on the tetrachoric procedure and the Hermite (1864) polynomials.

Substituting the Kerridge and Cook’s (1976) approximation for the two integral terms on the left side of the equation produces the following equation:

\[
\int \frac{1}{2\pi \sigma_1 \sigma_2 \sqrt{1 - \rho^2}} \exp \left\{ -\frac{1}{2(1 - \rho^2)} \left[\frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2} - 2 \rho \frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1 \sigma_2} \right] \right\} \, dx_1 \, dx_2
\]

In practice, the volume of the multivariate distributions is computed numerically. Genz and colleagues (Genz et al., 2008; Hothorn, Bretz, & Genz, 2001) developed a package, mvtnorm, for the statistical program R (Ihaka & Gentleman, 1996) that can be used to estimate the area under bivariate and multivariate-normal distributions. One of the algorithms available in the package is MIWA, which uses a numerical methodology to compute the area under the distributions (Miwa, Hayter, & Kuriki, 2003; Mi, Miwa, & Hothorn, 2009). The MIWA procedure can be used when the number of variables in the multivariate-normal distribution is 20 or less.1 (Genz et al., 2008; Mi et al., 2009). Since expectancy charts only require the use of two variables, the variable limitation is not an issue.

Unlike other estimation algorithms in the GenzBretz procedure, Miwa et al.’s (2003) procedure does not rely on Monte Carlo analysis; therefore, it provides consistent results each time it is conducted. Instead of using the equation presented above from Vasicek (1998), Miwa et al. developed a numerical integration approach that can be applied to more than two variables. In their approach, they divide the volume of the multivariate-normal distribution into different sections and compute the volume within each section. Their approach allows a user to modify the size of each section by inputting the number of “grid points” (the default is 128). This type of numerical integration is commonly used in calculus for finding the area under curved functions that are not easily integrated using integration rules from calculus (Larson & Edwards, 2014). The use of numerical integration is not completely foreign to psychometrics; the item-response theory software package BILOG uses numerical integration (Mislevy & Stocking, 1989). Thus, rather than implementing the formulaic integral shown above, Miwa et al.’s procedure implements numerical integration to estimate the volume of a multivariate-normal distribution.

Using 128 grid points, Miwa et al. (2003) tested the accuracy of their approach by comparing results from it to those tabulated by Tong (1990) and Gupta (1963). Of the 567 entries in Tong’s table, Miwa et al.’s procedure agreed

1 The GenzBretz algorithm can be used for up to 1,000 variables (Genz, Bretz, Miwa, Leisch, Scheipl, & Hothorn, 2008; Mi, Miwa, & Hothorn, 2009).
with 556 values; the remaining 11 values only disagreed by less than .00002. Miwa et al. noted that their results were similar to those from a Monte Carlo approach; however, their procedure was able to obtain more accurate results with less computing time when the number of variables was less than seven.

Our implementation of Miwa et al.’s (2003) procedure consists of three main computations. First, the joint probability is computed. This is the volume of the bivariate-normal distribution between the cutoffs for the predictor and the criterion. In mathematical terms, where x is the predictor and y is the criterion, the joint probability is the intersection (∩) of lower x cutoff < x < upper x cutoff and lower y cutoff < y < upper y cutoff. Second, the probability that any given score falls within the cutoffs for x is computed. This is the univariate volume of the following distribution: Lower x Cutoff < x < Upper x Cutoff. The joint probability is then divided by the x probability to give the expectancy. Thus, the expectancy is the proportion of those cases within the x cutoffs that are also within the y cutoffs. To provide an example, suppose that the validity is zero and we are interested in predictor scores and criterion scores above the mean. Here the x probability is 0 < x < ∞, which is 0.5. The joint probability (0 < x < ∞ ∩ 0 < y < ∞) is computed to be 0.25 and the expectancy is .25 ÷ .50, or 50%. In other words, in total 25% (i.e., a proportion of .25) of the cases have predictor and criterion scores above the mean. Of those with a predictor score above the mean, 50% have a criterion score above the mean. Thus, the expectancy is 50%.

FIGURE S2.
(a) 3-dimensional plot of a bivariate-normal distribution when \(r_{x_1,x_2} = 0 \).
(b) 3-dimensional plot of a bivariate-normal distribution when \(r_{x_1,x_2} = .5 \).
(c) 3-dimensional plot of a bivariate-normal distribution when \(r_{x_1,x_2} = .9 \).

Note. Figures obtained using the Statistics Online Computational Resource (SOCR) web-based statistical program.

REFERENCES

Mi, X., Miwa, T., & Hothorn, T. (2009). mvtnorm:

