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Electronic spectroscopy of jet-cooled benzylidenecyclobutane, a sterically
hindered styrene

V. P. Manea and J. R. Cable
Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University,
Bowling Green, Ohio 43403

~Received 13 May 1996; accepted 25 June 1996!

The electronic spectrum of the styrene derivative, benzylidenecyclobutane, seeded in a supersonic
jet expansion has been recorded using resonantly enhanced two-photon ionization spectroscopy. The
main vibronic features in the spectrum are associated with a low frequency progression assigned to
the torsional motion of the phenyl ring. Analysis of the observed torsional levels reveals an excited
state potential energy surface characteristic of a planar equilibrium geometry which undergoes large
amplitude motion and a ground state surface having a minimum at a torsional angle of 25° between
the phenyl and vinyl groups.Ab initio calculations of the ground state torsional potential surface
predict a minimum in the range of 28°–26°, depending on the size of the basis set. In these
structures the cyclobutane ring adopts a puckering angle between 17° and 19°. Deuterated
isotopomers have also been synthesized and their corresponding photoionization spectra analyzed to
reveal the mixing between the torsion and other low frequency modes such as cyclobutane ring
puckering. The extent of this mixing is found to be sensitive to the sites of deuteration on the
molecule. ©1996 American Institute of Physics.@S0021-9606~96!00337-6#

I. INTRODUCTION

A variety of spectroscopic techniques have been used to
explore the phenyl torsional motion in styrene and its substi-
tuted derivatives1–10 and its relation to thecis–trans double
bond isomerization process.11–13 The planarity of styrene in
the S0 and S1 electronic states has been determined from
analysis of both theS1→S0 laser induced single vibronic
level fluorescence spectra as well as the corresponding exci-
tation spectra.3,4 Planarity of the ground state has also been
confirmed by microwave spectroscopy.5 In S0 torsion occurs
on a very shallow flat-bottomed potential having an esti-
mated barrier of 1070 cm21 at the perpendicular geometry.4

The torsional potential energy surface reflects the dominance
of the stabilizing effects of conjugation over the destabiliza-
tion induced by steric repulsive interactions which are also
maximized at the planar conformation.

When the magnitudes of the steric forces are increased,
deviations from a planar structure will occur as whena or
cis-b substituents are added to the vinyl group. For instance,
a-methyl-styrene has been determined to be nonplanar inS0 ,
with a torsional angle of 30°, but planar inS1 .

8 In this case,
electronic factors dictate theS1 geometry while steric desta-
bilization is more important inS0 . Similarly in the
a-substituted derivative 1-phenylcyclohexene, electronic
spectroscopy from this laboratory has been used to identify
two inequivalent ground state conformers with phenyl tor-
sional angles of627°, which differed in energy by 127
cm21.14 The excited state of this molecule was also deter-
mined to have a torsional angle of 0°.

Spectroscopic investigations of these sterically hindered
styrenes were extended in a recent study to derivatives sub-
stituted at theb position of the ethylenic bond.15 Two
b-cycloalkane derivatives, benzylidenecyclopentane and
benzylidenecyclohexane, were synthesized and their reso-

nantly enhanced two-photon ionization spectra analyzed.
Both compounds were found to undergo large changes in
torsional geometry following photoexcitation leading to esti-
mates of the ground state torsional angle of approximately
45° in benzylidenecyclopentane16 and 50° in benzylidenecy-
clohexane. The greater deviation from planarity in ben-
zylidenecyclohexane results from both the larger ring size as
well as from the chair conformation of the ring which maxi-
mizes the steric interaction between the allylic andortho
hydrogens.

The current investigation focuses on another
b-substituted styrene ring derivative having a smaller four
membered ring. The structure of this compound, ben-
zylidenecyclobutane~BCB!, is illustrated in Fig. 1. Although
the smaller ring leads to smaller steric interactions and there-
fore might be expected to result in a simpler spectrum, this
substitution leads to increased complexity due to the appear-
ance of a number of additional low frequency vibronic
modes. Investigation of a deuterated isotopomer of BCB re-
veals that at least one of these modes has its origins in the
low frequency ring puckering motion of the cyclobutane
ring. Methylenecyclobutane itself adopts a puckered
geometry17 which undergoes ring inversion over a barrier of
139 cm21 at the planar conformation.18 The fundamental fre-
quency of the puckering mode in methylenecyclobutane has
been observed in the far infrared at 79 cm21.18 When incor-
porated into the styryl chromophore, the low frequency
modes involving phenyl torsion and cyclobutane ring puck-
ering are found to be strongly coupled.

II. EXPERIMENT

These experiments were performed in a supersonic mo-
lecular beam apparatus consisting of two differentially
pumped chambers. In the first chamber, maintained at a
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background pressure of approximately 1 mTorr by a 9 in. oil
vapor booster pump, the samples, seeded in either He or Ar
carrier gas, were expanded from a pulsed nozzle having a 1
mm orifice. The resulting free expansion was skimmed by a
1 mm skimmer producing a molecular beam in the second
chamber, which was pumped by a liquid nitrogen trapped 6
in. oil diffusion pump to maintain a base pressure of 231027

Torr.
In this second chamber, the molecular beam was crossed

in the ionization region of a linear time-of-flight mass
spectrometer19 by an unfocused laser beam from a tunable,
frequency doubled, Nd:YAG pumped dye laser. A mixture
of rhodamine 590 and rhodamine 610 dyes was used in the
dye laser to provide the required range of excitation frequen-
cies, with pulse energies after attenuation of approximately
0.3 mJ. Molecular ions were produced in a one-photon reso-
nant, two-photon ionization process and the mass selected
signals were recorded with a gated integrator. When desired,
spectra were normalized with respect to variations in the dye
laser power by dividing the raw ion signal by the square of
the simultaneously recorded laser energy. The squared de-
pendence of the ion signal was established by monitoring the
change in the intensity of various vibronic peaks over a
range of laser energies. This correction is required for a
quantitative analysis of relative peak intensities.

BCB was synthesized according to a procedure de-
scribed by Baileyet al.,20 in which n-BuLi was added to
phenylacetylene in THF and then refluxed overnight with
diiodopropane. The resulting acetylenic iodide was then cy-
clized by treatment witht-BuLi in n-pentane/diethylether at
278 °C followed by warming to room temperature. Metha-
nol was then added to protonate the vinyl position. Extrac-
tion of the organic layer, evaporation of the solvent, and
vacuum distillation gave the desired product.

Several deuterated isotopomers of BCB, as illustrated in
Fig. 1, were also synthesized during the course of this work.
When D2O was added instead of methanol at the protonation
step in the procedure described above the result was forma-
tion of BCB-d1 deuterated at thea position. Syntheses of the

deuterated derivatives BCB-d5~phenyl! and BCB-d5
~cyclobutane! were accomplished via Wittig reactions21 in
which the deuterated starting materials were benzyl-d7-
triphenylphosphonium bromide and cyclobutanone-d4 , re-
spectively. The deuterated phosphonium salt was obtained
from toluene-d8 in a two-step synthesis, by first refluxing
overnight withN-bromosuccinimide to yield the fully deu-
terated benzyl bromide and then reacting the bromide with
triphenylphosphine in boiling toluene to give the phospho-
nium bromide as a white solid in 82% yield. A Wittig
reaction with cyclobutanone gave BCB-d5~phenyl! since
the benzylic deuteriums were lost through exchange
with protons from the solvent, DMSO. To synthesize
BCB-d5~cyclobutane! the Wittig reaction between
cyclobutanone-d4 ~obtained from acid catalyzed hydrogen
exchange with D2O! and triphenylphosphonium bromide was
carried out in dimethylsulfoxide-d6 to avoid the exchange of
the deuteriums on the cyclobutanone with solvent protons.
However, exchange of the benzylic protons in the benzyl-
triphenylphosphonium chloride with deuterium from the sol-
vent resulted in formation of thed5 derivative. This proce-
dure avoids the formation of a range of partially deuterated
products. The identity of all products was confirmed by
GC/MS and1H nuclear magnetic resonance spectroscopy.

III. RESULTS

A. Spectrum of BCB

The resonance enhanced photoionization spectrum of
BCB is displayed in Fig. 2. The lower panel shows the spec-
trum observed using an expansion of He at a stagnation pres-
sure of 3.8 atm while the upper panel was obtained using an
Ar expansion at 2 atm. Both panels display spectra in which
the intensity of the monitored parent ion channel has been
normalized to the square of the relative laser energy. The
enhanced cooling efficiency of Ar is reflected by the reduc-
tion of the hot band intensities in the upper panel. This per-

FIG. 1. Structures of the molecules under study: BCB, BCB-d1 ,
BCB-d5~phenyl!, and BCB-d5~cyclobutane!.

FIG. 2. The resonant two-photon ionization spectrum of BCB expanded in
Ar ~upper panel! and He ~lower panel!. The signal was normalized with
respect to variation in the dye laser pulse energy.
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mits a clear identification of the electronic origin at 34 582
cm21. The weak origin transition is followed within the first
400 cm21 by a fairly complex pattern of vibronic bands
among which several progressions can be identified with
spacings on the order of 27 cm21. The first such progression
is based off the origin and exhibits considerable anharmonic-
ity as revealed by the sudden increase in spacings from 16.9
cm21 between the first two members to 25.8 cm21 between
the following two. This progression is assigned to the tor-
sional motion of the phenyl ring. A maximum in the intensity
distribution is found at thev853 level. In Table I the tor-
sional spacings and energy levels in the excited state of BCB
are listed for seven members of the progression along with
the relative intensities of each transition.

Numerous hot band transitions are also evident in the
ionization spectrum recorded with a He expansion. Figure 3
displays the low frequency region of the spectrum, extending
to the red of the electronic origin. Several progressions asso-
ciated with phenyl torsion are observed which can be confi-
dently assigned since the excited state levels are known.
Thus transitions from three excited torsional levels of the

ground state to the vibrationless level of the excited state can
be identified at 34 547, 34 516, and 34 491 cm21. This lo-
cates these torsional levels in the ground electronic state at
34.6, 66.1, and 90.7 cm21, which yields spacings of 34.6,
31.5, and 24.6 cm21. Again the torsional levels are found to
be quite anharmonic, although here displaying spacings
which decrease with the torsional quantum number.

Much of the complexity in the spectrum of cold BCB
arises from additional torsional progressions which occur in
combination with other low frequency fundamental modes.
Two such progressions originate 81.4 and 112.1 cm21 above
the electronic origin, as seen in Fig. 2. Both of these progres-
sions have different spacings and intensity distributions than
the torsional progression based off the origin. For the pro-
gression starting at 81.4 cm21, the spacing between torsional
levels starts at 20.3 cm21 and increases to 28.7 cm21. Tor-
sional levels in combination with the 112.1 cm21 fundamen-
tal exhibit less anharmonicity and show larger spacings.

B. Spectrum of BCB- d5(phenyl)

To help confirm the assignment of the torsional progres-
sion in the spectrum of BCB, the deuterated isotopomer
BCB-d5~phenyl! was also investigated. This particular isoto-
pic substitution significantly increases the reduced moment
of inertia for the phenyl torsion.

The spectrum of BCB-d5~phenyl! obtained by monitor-
ing the ion signal corresponding to the mass of the pentadeu-
terated isotopomer is displayed in Fig. 4. Results using both
Ar ~upper panel! and He ~lower panel! expansions are
shown. These spectra have not been corrected for variations
in the laser energy. The origin transition is located at 34 728
cm21, corresponding to a1146 cm21 blueshift. This shift
arises from the differential changes in the zero-point vibra-
tional energies of the ground and excited electronic states.
The magnitude of the observed shift is roughly comparable
to the 1170 cm21 shift reported by Hui et al.11 for

TABLE I. Observed and calculated torsional energy levels inS1 and rela-
tive intensities in BCB.

v8

Torsional
spacing
~cm21!

Torsional
energy
~cm21!

Calculated
torsional

energy~cm21!a
Relative
intensity

Calculated
relative
intensityb

0 0.0 0.0 0.14 0.18
1 16.9 16.9 16.9 0.43 0.50
2 25.8 42.7 42.9 0.75 0.77
3 26.6 69.3 69.0 1.00 0.86
4 26.8 96.1 96.1 0.71 0.71
5 27.4 123.5 123.4 0.37 0.45
6 27.2 150.7 150.9 0.17 0.23

aCalculated with the optimized parametersn0528.1,C52.43,c50.845.
bCalculated with the parametersS54.23,R50.812.

FIG. 3. The low frequency region of the resonant two-photon ionization
spectrum of BCB seeded in a He expansion. The origin occurs at 34 582
cm21 and three torsional hot bands which terminate on the vibrationless
excited state level are marked by circles.

FIG. 4. Resonant two-photon ionization spectrum of BCB-d5~phenyl! in
expansions of Ar~upper panel! and He~lower panel!. The plots display the
raw ion signal without normalization to the laser energy.
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styrene-d8 , relative to the undeuterated species, as well as to
the value of1131 cm21 found upon deuteration of the ben-
zene ring in 1-phenyl-1,3-butadiene.22

Except for the slight changes in the torsional spacings
the spectrum appears quite similar to that of the undeuterated
compound. The main torsional progression based off the ori-
gin exhibits initial spacings of 16.3 and 24.8 cm21 which
then stay fairly constant at approximately 26 cm21. The in-
tensity pattern among the peaks in this progression is not
significantly altered by the deuteration, peaking again at the
v853 level. Table II lists the observed torsional energies
and spacings in the excited electronic state. Similarly, tor-
sional levels in the ground electronic state from which tran-
sitions to the vibrationless excited state occur were identified
in the spectrum taken in a He expansion to yield values of
33.2, 64.0, and 88.0 cm21 for the three lowest levels.

Two additional torsional progressions are also identified
with orgins 77.7 and 109.2 cm21 above the electronic origin.
Thus deuteration of the benzene ring induces a shift of23.8
and22.9 cm21, respectively, in the fundamentals on which
these progressions are based. The torsional spacings in the
second progression show a large initial increase from 20.7
cm21 between the first and second members to 27.7 cm21

between the second and third. The corresponding levels
based off the 109.2 cm21 vibration exhibit a smaller degree
of anharmonicity. Although the intensity distributions within
each of the three torsional progressions are quite different,
they remain unchanged from what is seen in the undeuterated
compound.

C. Spectrum of BCB- d5(cyclobutane)

A second isotopomer investigated was
BCB-d5~cyclobutane! in which the four allylic positions on
the cyclobutane ring were deuterated as well as thea posi-
tion on the vinyl group. Thea deuteration was required to
permit the synthesis of an isotopically pure sample. This is
necessary, despite the fact that the mass spectrometer can
readily distinguish molecules differing by 1 amu, because it
is difficult in a spectral scan to prevent the signal from such
a species from leaking into the desired mass channel. That
this pentadeuterated isotopomer is representative of BCB

deuterated only on the cyclobutane ring was confirmed by
studies on BCB-d1 which is deuterated only at thea posi-
tion. The photoionization spectrum of this species was found
virtually indistinguishable from that of the undeuterated mol-
ecule. Deuteration of the cyclobutane ring modifies the ef-
fective masses of both the torsional mode as well as any
modes derived from the cyclobutane ring which involve con-
siderable motion of the allylic hydrogens.

The mass resolved resonant two-photon ionization spec-
trum of BCB-d5~cyclobutane! is shown in Fig. 5 in both He
and Ar expansions. The electronic origin is found at 34 604
cm21, corresponding to a small,122 cm21, shift upon deu-
teration of the cyclobutane ring. This is similar to the find-
ings for styrene2,11 and 3-methyl-d3-styrene

7 when deutera-
tion is performed away from the benzene ring. Unlike the
previous case of BCB-d5~phenyl!, this deuteration results in
a pattern of vibronic transitions that is markedly different
from the undeuterated species. First, a large change in the
spacings within the torsional progression based off the elec-
tronic origin is observed. The first torsional interval is only
13.1 cm21, which is 3.8 cm21 smaller than in BCB and 3.2
cm21 smaller than in BCB-d5~phenyl!. Subsequent spacings
increase to 23.9 and 24.6 cm21 then approach a value of 25.5
cm21. The observed torsional levels are listed in Table III.
The three lowest torsional levels in the ground electronic
state with transitions to the vibrationless level of the excited
electronic state are found at 34.5, 66.0, and 91.9 cm21.

Significant differences are also evident in the torsional
progressions based off the two other fundamental vibrational
modes. The first fundamental is found at 91.4 cm21, corre-
sponding to a 10.0 cm21 shift to higher frequency, relative to
BCB, while the second appears at 100.8 cm21, representing a
shift of 11.3 cm21 to lower frequency. In the phenyl deuter-
ated species these two transitions both underwent much
smaller shifts on the order of 3 cm21 and in both cases to
smaller frequencies. Torsional levels in combination with
both of these vibrations exhibit spacings which are substan-

FIG. 5. Resonant two-photon ionization spectrum of BCB-d5~cyclobutane!
in expansions of Ar~upper panel! and He~lower panel!. The plots display
the raw ion signal without normalization to the laser energy.

TABLE II. Observed and calculated torsional energy levels inS1 of
BCB-d5~phenyl!.

v8
Torsional

spacing~cm21!
Torsional

energy~cm21!

Calculated
torsional

energy~cm21!a

Calculated
torsional

energy~cm21!b

0 0.0 0.0 0.0
1 16.3 16.3 15.7 16.3
2 24.8 41.1 40.4 41.5
3 25.6 66.7 65.1 66.5
4 26.0 92.7 90.8 92.4
5 25.7 118.4 116.7 118.5
6 26.4 144.8 142.8 144.9

aCalculated with the isotopically adjusted parametersn0526.7, C52.55,
c50.805.
bCalculated with the optimized parametersn0526.9,C52.38,c50.887.
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tially different from their respective values in both BCB and
BCB-d5~phenyl!. The relative intensities of these combina-
tion bands also deviate from the two previous derivatives.
The second progression appears more extended than in BCB
while the third shows the opposite trend.

IV. DISCUSSION

A. One-dimensional torsional analysis

1. Excited state levels

As a starting point for understanding the torsional mo-
tion in BCB, a one-dimensional analysis of the origin-based
torsional progressions in each of the three isotopomers was
undertaken. Large amplitude hindered rotations are typically
treated with a Hamiltonian of the following form:23

H52B
d2

dt2
1V~t!, ~1!

whereB represents the reduced rotational constant for tor-
sion andV(t) is the potential energy expressed as a function
of the torsional anglet. The periodic torsional potential is
commonly written as a Fourier cosine expansion:

V~t!5
1

2 (
n

Vn~12cosnt!. ~2!

Attempts to model the excited state torsional potential in
BCB were carried out usingV2 , V4 , andV6 terms since the
twofold symmetry of the phenyl rotor requires only evenn
terms be retained in the expansion. The reduced rotational
constant,B, is inversely proportional to the reduced moment
of inertia for the internal rotation,I r , which was calculated
using the formulation of Pitzer24 applicable to balanced ro-
tors. This requires a knowledge of the molecular structure in
the excited electronic state, which was estimated using a
semiempirical configuration-interaction calculation with the
AM1 Hamiltonian as contained inMOPAC ver. 5.00.25 The
resulting equilibrium structure was determined to haveCs

symmetry, with all carbon atoms lying in a common plane.
From this structure a value of 43.4 amu Å2 was determined
for I r leading to a value of 0.388 cm21 for B.

Eigenvalues of the hindered rotor Hamiltonian, Eq.~1!,
were calculated in a variational approach, making use of a
free-rotor basis set,26 and the potential parametersV2 , V4 ,
andV6 were varied in a nonlinear least-squares procedure to
optimize the fit between the calculated eigenvalues and the
observed torsional levels in the excited electronic state. A fit
using only these three parameters was unable to reproduce
experimental values, particularly the unusual spacings be-
tween the three lowest levels, to better than several wave
numbers. The torsional potential must be quite flat at the
bottom of the well and this behavior is difficult to accurately
model with a three parameter cosine expansion.

As an alternative to the cosine expansion of the torsional
potential, Eq.~2!, a quadratic1 Gaussian potential was in-
vestigated as a means to better reproduce the flat-bottomed
well without requiring a large number of parameters. This
potential has the form:

V~t!5 1
2kt21A exp~2at2! ~3!

and is clearly an approximation valid only in the region of
the potential minimum since it is not periodic. Nevertheless,
it is capable of producing flat-bottom or double minimum
wells, depending on the magnitudes of the parametersk, A,
and a. With this potential, the hindered rotor Hamiltonian
can be recast from Eqs.~1! and ~3! using the dimensionless
normal coordinateQ as:

H5
n0
2 F2

d2

dQ2 1Q21C exp~2cQ2!G . ~4!

The correlation betweent and Q and the corresponding
transformations between the equivalent sets of potential pa-
rameters are given below:

t5A2B

n0
Q, k5

n0
2

2B
, A5C

n0
2
, a5c

n0
2B

. ~5!

The eigenvalues of the Hamiltonian in Eq.~4! were de-
termined in a variational approach using the method of
Coon, Naugle, and McKenzie27 with separate basis sets of 50
harmonic oscillator wave functions of even or odd symmetry
of frequencyn0. A nonlinear least-squares fit to the observed
torsional levels in BCB performed onn0, C, and c yields
values of 28.1 cm21, 2.43, and 0.845, respectively. These
values result in the calculated torsional energy levels dis-
played in the fourth column of Table I which are found to
differ by at most 0.3 cm21 from the experimental observa-
tions. In combination with the value of the reduced rotational
constant,B, the torsional potential in Eq.~3! becomes fully
defined and is plotted in Fig. 6. This potential surface dis-
plays two minima at68.7°, separated by a barrier at 0° of
5.5 cm21. The ground torsional level lies 3.4 cm21 above
this barrier, leading to a planar equilibrium structure which
undergoes large amplitude torsional motion.

Deuteration of BCB results in different values ofI r and
henceB, but the potential parametersk, A, anda extracted
from n0, C, c, andB of the undeuterated species via Eq.~5!
should remain unchanged if the one-dimensional analysis is
correct. The analysis of the torsional levels in

TABLE III. Observed and calculated torsional energy levels inS1 of
BCB-d5~cyclobutane!.

v8
Torsional

spacing~cm21!
Torsional

energy~cm21!

Calculated
torsional

energy~cm21!a

Calculated
torsional

energy~cm21!b

0 0.0 0.0 0.0
1 13.1 13.1 15.7 13.1
2 23.9 37.0 40.3 37.5
3 24.6 61.6 64.9 61.4
4 25.4 87.0 90.5 86.7
5 25.5 112.5 116.4 112.4
6 25.7 138.2 142.5 138.4

aCalculated with the isotopically adjusted parametersn0526.7, C52.56,
c50.804.
bCalculated with the optimized parametersn0526.8,C53.31,c50.725.
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BCB-d5~phenyl! was therefore performed in two ways. First,
new values ofn0, C, and c were recalculated from those
obtained from the optimized fit on BCB after determining the
value of the reduced rotational constant,B, to be 0.352 cm21

from the same excited state structure used previously. This
results in values of 26.7 cm21, 2.55, and 0.805 forn0, C, and
c. The energy levels resulting from these parameters are
shown in the fourth column of Table II and are seen to re-
produce the experimental values to within 2 cm21. A com-
plete reoptimization of the potential parameters yields values
of 26.9 cm21, 2.38, and 0.887 forn0, C, andc and predicts
torsional levels to within 0.4 cm21 as shown in the fifth
column of Table II. The small differences between these two
sets of parameters@the two plots ofV(t) are essentially in-
distinguishable# give no indication that the one-dimensional
treatment is not valid.

However, when the same double analysis is repeated on
BCB-d5~cyclobutane! the agreement between the two ap-
proaches breaks down. A reevaluation of the reduced mo-
ment of inertia for cyclobutane deuteration yields a value of
0.351 for B, resulting in values of 26.7 cm21, 2.56, and
0.804 forn0, C, andc using Eq.~5! and the parameters from
the undeuterated species. These parameters give a poor rep-
resentation of the observed torsional levels, as illustrated in
the fourth column of Table III. Nevertheless a full optimiza-
tion procedure is able to accurately reproduce experiment, as
shown in the fifth column, using values of 26.8 cm21, 3.31,
and 0.725 for the potential parametersn0, C, andc. Note that
a considerable change in the values of both theC and c
parameters is required, resulting in torsional potentials with
different locations of the minima and different barrier
heights. This observation will be shown to be indicative of a
mixing of the torsion with other vibrational modes.

2. Franck-Condon analysis

Information about the ground state torsional surface
arises from two sources in the resonant ionization spectrum
of BCB. Ground state torsional levels are observed directly
in the weak hot band region of the spectrum and these will
be discussed later. Additionally, the intensity distribution of
the excited state torsional progression is sensitive to the na-
ture of the ground state surface, particularly the location of

the potential minimum. In order to support the extended pro-
gression in the torsional mode, the ground state minimum
must be substantially displaced from aCs symmetry~t50°!
excited state. To interpret the torsional intensities the sim-
plest approximation is employed, in which it is assumed that
the lowest ground state torsional wave function can be well
modeled by the ground state of a harmonic oscillator having
a frequency of 34.6 cm21, corresponding to the spacing be-
tween the ground and first excited torsional levels extracted
from the hot band analysis.

Within this approximation, the vibrational overlap inte-
grals between this displaced ground state oscillator and vari-
ous torsional wave functions in the excited electronic state
are readily evaluated since the excited state wave functions
have already been expressed in a basis set of harmonic os-
cillators of frequencyn0, centered att50°. Therefore the
overlap of the ground torsional level with any torsional level
in the excited state was calculated as a sum of the products
between the previously determined expansion coefficients
and harmonic oscillator overlap integrals. The overlap inte-
grals are most conveniently evaluated in terms of two param-
eters:R5ne/ng , the ratio of the frequencies of the two os-
cillators, andS, a measure of the displacement,Dt, between
the two potential minima.28 With R fixed at 28.1/34.6
50.812,S was varied in a nonlinear least-squares procedure
to fit the relative intensities in the excited state torsional
progression of BCB~the fifth column of Table I!. Optimiza-
tion resulted in a value of 4.23 forS and produced the cal-
culated relative intensities also shown in Table I. Having
determinedS, the torsional displacementDt is given by:

~Dt!254~B/ng!S, ~6!

which yields a value of 0.431 rad or 24.7° forDt. The value
of the ground state rotational constant in Eq.~6! was esti-
mated at 0.380 cm21 from a ground stateab initio geometry
optimization performed at the Hartree–Fock level with a
3-21G basis set.29 Since the excited state torsional levels are
expressed in harmonic oscillator wave functions centered at
t50° this result implies a ground state torsional geometry in
which the vinyl group is twisted 25° out of the plane of the
phenyl ring.

3. Ground state levels

With evidence that the vinyl group does not lie in the
phenyl ring plane in the ground electronic state of BCB, the
possibility of at least two conformations arises since torsion
out of the plane can occur in two directions and the cyclobu-
tane ring may not be planar. However, two pieces of evi-
dence argue against this conclusion. First there are no dis-
tinct spectral lines in the resonantly enhanced ionization
spectrum that appear to require a second ground state con-
former. Additional evidence for the lack of a second ground
state conformer is provided by the behavior of the observed
spectrum as the laser pulse energy is increased. As saturating
conditions are approached the lines with the stronger
Franck–Condon factors saturate first allowing the weaker
transitions to grow in relative intensity. Eventually lines

FIG. 6. Excited state torsional potential of BCB, calculated with Eq.~3!
after optimizing the potential parameters to fit the observed energy levels.
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saturate to a value determined by the population of the lower
level of the transition. This procedure has previously been
used to identify different conformations in the ground elec-
tronic states of several tryptophan derivatives30 as well as of
a phenyl substituted retinyl polyene.31 In the case of BCB,
these saturation experiments were carried out over a wide
range of pulse energies and gave no indication that different
sets of lines were saturating to different levels.

The fact that there is no spectral evidence for a second
ground state conformer, coupled with the conclusion that the
ground state geometry has a nonzero torsional angle, requires
a symmetric double-well torsional potential where torsion in
the opposite direction produces a spectroscopically equiva-
lent conformation. If this is the case and the barrier between
the two wells is small, the ground state torsional levels will
split into symmetric~1! and antisymmetric~2! components.
Since the excited state potential was found centered at theCs

geometry, torsional levels with even quanta of excitation are
symmetric and levels with odd quanta of excitation are anti-
symmetric. Vibronic transitions between symmetric and an-
tisymmetric levels are forbidden so all transitions which ter-
minate on excited state levels with even quanta must
originate from the symmetric component of the ground state
level while all transitions which terminate on excited state
levels with odd quanta must originate from the antisymmet-
ric component of the ground state level.

This requires that a more careful analysis of the hot band
region of the spectrum be performed so that both symmetric
and antisymmetric components of the ground state torsional
levels can be identified. The symmetric components are
readily assigned using hot band transitions that terminate on
the vibrationless excited state level through

Tv15T01
0 2Tv1

0 , ~7!

whereTv1 represents the torsional energy of the symmetric
component of thevth level in the ground electronic state and
T01
0 2Tv1

0 gives the measured energy difference between the
electronic origin and the hot band originating from thev1
level. Alternatively, the antisymmetric components are as-
signed using hot band transitions which terminate on the first
excited torsional level in the excited electronic state through

Tv25~T02
1 2Tv2

1 !1~T022T01!, ~8!

whereTv2 represents the energy of the antisymmetric com-
ponent of thevth ground state torsional level,T02

1 2Tv2
1

gives the measured energy difference between the torsional
transitions that terminate on the first excited level in the ex-
cited state, andT022T01 gives the splitting between the
two components of thev50 level in the ground electronic
state. The splitting between the 01 and 02 levels cannot be
directly observed but in this treatment is assumed to be neg-
ligibly small. The torsional levels in the ground electronic
state calculated in this fashion are listed in column 2 of Table
IV. Note that no splitting is resolved in thev51 level but
that a small 1.3 cm21 splitting is observed in thev52 level.
Characterization of these levels and splittings is hampered
somewhat by the larger rotational band contours associated
with these thermally excited levels.

The ground state levels in Table IV can also be fit to a
quadratic1Gaussian potential as done previously for the ex-
cited state. A nonlinear least-squares fit found optimal values
for the potential parameters ofn0521.8 cm21, C523.9, and
c50.176. These parameters generate the torsional potential
shown in Fig. 7 as a solid line. This potential exhibits two
equivalent minima att5629.6° with a barrier att50° of
109 cm21. The energy levels predicted by this potential are
given in the third column of Table IV and are seen to differ
by at most 0.2 cm21 from experiment. Note that splittings
predicted for thev50 andv51 levels are only 0.002 and
0.1 cm21, which are both much smaller than the rotational
contours of the transitions used to make the assignments.

Upon deuteration the rotational constants,B, for
BCB-d5~phenyl! and BCB-d5~cyclobutane! in the ground
electronic state decrease to 0.343 and 0.347 cm21, respec-
tively. Due to the similarity in these values only negligible
differences in the ground state torsional levels would be pre-
dicted. However an analysis of the hot band region of the
spectrum of these two species reveals that the level spacings
in BCB-d5~phenyl! decrease relative to BCB, as expected,
but that in BCB-d5~cyclobutane! very little change is ob-

TABLE IV. Observed and calculated torsional energy levels inS0 of BCB.

v9
Torsional

energy~cm21!

Calculated
torsional

energy~cm21!a

Ab initio
torsional

energy~cm21!b

01 0.0 0.0 0.0
02 0.0c 0.002 0.008
11 34.6 34.7 37.3
12 34.6 34.8 37.6
21 66.1 66.0 69.5
22 67.4 67.3 72.6
31 90.7 90.7 94.9
32 98.3 106.9

aCalculated with the optimized parametersn0521.8,C523.9,c50.176.
bCalculated from a fit to theab initio potential with the parametersn0523.7,
C521.2,c50.200.
cThe splitting between 02 and 01 cannot be directly measured but is as-
sumed to be negligible.

FIG. 7. Ground state torsional potential of BCB~solid line! obtained by
fitting the experimental ground state energies to the quadratic1Gaussian
potential in Eq.~3!. The dotted line representsab initio results from calcu-
lations at the Hartree–Fock 3-21G level in which the torsional angle was
varied in 10° increments and all other degrees of freedom were uncon-
strained.

5693V. P. Manea and J. R. Cable: Electronic spectroscopy of benzylidenecyclobutane

J. Chem. Phys., Vol. 105, No. 14, 8 October 1996



served upon deuteration. This anomalous behavior of the tor-
sional levels in the cyclobutane deuterated species mirrors
what was seen in the excited electronic state, demonstrating
that the source of this effect is present in both electronic
states.

B. Ab initio calculations

To investigate the symmetric double-well nature of the
ground state torsional potential, a series ofab initio geom-
etry optimizations was carried out at fixed 10° torsional in-
tervals using the 3-21G basis set. The remaining degrees of
freedom in the molecule were allowed to vary to locate the
energy minimum. The potential thus obtained is displayed in
Fig. 7 as a dotted line in comparison to the potential obtained
from the earlier analysis of the torsional hot bands. It is
clearly seen to be symmetric about the fully conjugated con-
formation with two potential minima located att5628°
which are separated by a barrier of 110 cm21. Such a poten-
tial can also be very accurately reproduced by a quadratic
1Gaussian function as discussed earlier with parameter val-
ues of n0523.7 cm21, C521.2, andc50.200 chosen to
provide the optimal fit. These parameters can subsequently
be used to predict ground state torsional levels as are given
in the fourth column of Table IV. While the calculated val-
ues are consistently larger than those observed experimen-
tally, they do provide fairly reasonable estimates of the tor-
sional energies thus lending support to the calculated surface.

Examination of the calculated structures at the potential
minima shows that the two are simply mirror image confor-
mations involving phenyl torsion and cyclobutane ring puck-
ering in the opposite direction. This is consistent with the
results from the saturation experiments. At the top of the
torsional barrier, aCs symmetry structure is predicted indi-
cating that motion along this coordinate involves both tor-
sion of the phenyl ring and inversion of the cyclobutane ring.
Unlike the case of benzylidenecyclopentane, which also ex-
hibits two mirror image conformations,15,16motion along this
adiabatic torsional coordinate results in conformer intercon-
version over a very low energy barrier.

The fact that the transition state att50° for conformer
interconversion is predicted to have a planar cyclobutane
ring lends support to the assignment of aCs symmetry struc-
ture to the excited state. When the torsion angle approaches
0°, whether in passing over the torsional barrier in the
ground electronic state or in the equilibrium conformation of
the excited electronic state, the cyclobutane ring appears to
have sufficient flexibility to distort in a manner to reduce the
steric interactions of the two allylic hydrogens with the phe-
nyl ortho hydrogen. In a planar ring conformation the steric
interaction is distributed equally between the two allylic hy-
drogens.

Fully optimized geometries were also obtained at theab
initio Hartree–Fock level with both 3-21G and 6-31G* basis
sets29 and the results of the latter are displayed in Fig. 8. In
conjuction with a 28° phenyl torsion angle, the cyclobutane
ring in BCB was calculated, with a 3-21G basis, to adopt a
conformation with a ring-puckering angle of 17°. This angle

is defined as the angle between the planes which contain the
three carbon atoms on either side of the puckered ring. The
higher level 6-31G* calculation was performed as a check on
the accuracy of the 3-21G predictions and yielded very simi-
lar torsion and ring-puckering angles, with values of 26° and
19°, respectively.

A 19° puckering angle is very similar to the 22° value
derived for the cyclobutane ring in methylenecyclobutane,
MCB, from a combination of electron diffraction and micro-
wave data.32 The calculated 110 cm21 barrier for conformer
interconversion in BCB is slightly lower than the 139 cm21

barrier in MCB18 indicating that theCs symmetry transition
state in the former is stabilized by conjugation with the phe-
nyl ring.

C. Torsional coupling

The one-dimensional analyses of the origin-based tor-
sional progressions in the spectra of BCB and its two isoto-
pomers were made assuming that this motion corresponded
to rigid torsion of the phenyl group about the single bond
connecting it to the methylenecyclobutane ring. While this
picture does permit the spectra of both the undeuterated and
the phenyl ring deuterated species to be fit using a common
set of potential parameters, these same parameters do not
adequately reproduce the observed torsional levels in the cy-
clobutane ring deuterated species, BCB-d5~cyclobutane!.
Since the multidimensional molecular potential energy sur-
face must be invariant to isotopic substitution, this observa-
tion requires a more careful investigation of the molecular
motion assigned to the torsional mode. One cause of the
observed discrepancy may be the assumption of a rigid tor-
sional motion which does not include any simultaneous
variation of the puckering angle of the cyclobutane ring. The
inclusion of this motion would slightly modify the effective
masses, appearing as reduced moments of inertia, of the tor-
sional mode from the values used earlier. Since the ground
electronic state adopts a conformation with nonzero values
for both the torsional angle and the ring puckering angle it
appears plausible that the observed low frequency mode in
the excitation spectra contains contribution from both the
torsion and puckering motions. A reevaluation of the effec-
tive masses might then give a new set of values which in
combination with a single set of potential parameters would
accurately reproduce the observed torsional levels in all three
isotopic species.

FIG. 8. Ground state BCB structure obtained from anab initio Hartree–
Fock geometry optimization using a 6-31G* basis set.
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The effective mass for the combined torsion–puckering
motion was calculated using a one-dimensional reduction of
the WilsonG matrix formalism33 as

meff5(
i
mi S dridt D 2, ~9!

wheredri is the change in the coordinate vector of thei th
atom which occurs for a corresponding changedt in the
torsional angle. The motion comprising this mode is defined
so that a 3.3° change in the torsional coordinatet away from
the equilibrium value of 0° is accompanied by a 2.0° pucker
of the cyclobutane ring. This ratio of torsion to pucker was
chosen since it will transform a planar structure, as found in
the excited state, into one having the torsion and puckering
angles calculated for the ground electronic state.

A semirigid bisector model was used to describe the mo-
tion of the four-membered ring. This model was first intro-
duced by Chanet al.34 for trimethylene oxide and was later
applied to cyclobutane35 and other pseudo-four-membered
ring molecules.36 In this model the methylenecyclobutane
ring folds about the ring diagonal such that all bond dis-
tances remain constant. Concomitant motion of the hydrogen
atoms attached to the methylene groups about which folding
occurs preserves the HCH bond angles and keeps the bisec-
tors of both the HCH bond angles and the interior ring bond
angles coincident throughout the vibration. Using an opti-
mized molecular geometry calculated at the AM1 level and
subject to the bisector model constraints, the Cartesian coor-
dinates of each atom in BCB were computed first for the
equilibrium planar structure and then for a structure having a
torsional angle of 3.3° and a puckering angle of 2.0°. This
procedure was facilitated using the vector representation of
Laaneet al.37 The two sets of Cartesian coordinates were
then both converted to the principal moment of inertia frame
to remove any contributions from translational and rotational
motion and their difference used to represent the differential
changesdri which, in combination with a value of 3.3° for
dt, were used to estimate the effective mass of this vibra-
tional mode via Eq.~9!.

The above procedure leads to an effective mass in the
form of a reduced moment of inertia of 61.0 amu Å2 for the
undeuterated species and to values of 66.4 and 66.7 amu Å2

for the phenyl and the cyclobutane deuterated species, re-
spectively. With these values the observed torsional levels in
BCB and BCB-d5~phenyl! can once again be quite reason-
ably fit by a single set of potential parameters but the case of
BCB-d5~cyclobutane! again proves problematic. This is
readily apparent from the nearly identical calculated values
of the effective masses of the two deuterated species which
nevertheless exhibit quite different torsional levels. There-
fore inclusion of additional ring puckering motion into the
torsional normal coordinate fails to provide an adequate de-
scription of the experimental results.

An alternative explanation for the observed discrepancy
is that deuteration of the cyclobutane ring results in substan-
tial mixing of the excited state normal modes relative to
those in the excited states of the undeuterated and phenyl

deuterated species. Strong support for this second explana-
tion can be found by comparing the frequencies of the two
other low frequency fundamentals found in the spectra of all
three species. In BCB these fundamentals are seen at 81.4
and 112.1 cm21 and are observed to shift to lower frequen-
cies of 77.7 and 109.2 cm21 following phenyl deuteration in
BCB-d5~phenyl!. However in BCB-d5~cyclobutane! the
lower frequency mode shifts to a higher frequency of 91.4
cm21 while the higher frequency mode shifts to a lower fre-
quency of 100.8 cm21. The very large magnitudes of these
shifts and the shift to higher frequency cannot be explained
solely in terms of a change in the effective mass of a single
normal coordinate that occurs upon deuteration. Instead this
is taken as evidence of mixing the normal modes of
BCB-d5~cyclobutane! relative to those in the undeuterated
species. The mixing may also include, to a lesser extent, the
mode formally labeled as torsion if all have the same sym-
metry. Inclusion of this mode in the mixing would readily
account for the breakdown of the earlier one-dimensional
analyses and require at minimum a three-dimensional model.

To more closely examine this hypothesis, ground state
harmonic frequencies were calculated at theab initio
Hartree–Fock level using a 3-21G basis set. Four frequencies
were found with values less than 140 cm21 and were as-
signed by visualization of the normal modes. A frequency of
36 cm21 was found for the torsional mode while frequencies
of 101 and 118 cm21 were assigned to the cyclobutane ring
puckering and the out-of-plane bend of the vinyl group, re-
spectively. The fourth mode at 139 cm21 was found to cor-
respond to an in-plane bend about thea vinyl carbon. Since
the ground state geometry of BCB is not planar, the distinc-
tion between in-plane and out-of-plane modes is not rigor-
ous, but in an excited state ofCs symmetry all in-plane
modes would haveA8 symmetry and all out-of-plane modes
would haveA9 symmetry. Thus the proposed normal mode
mixing appears to involve the three low frequencyA9 modes
corresponding to torsion, ring puckering, and out-of-plane
bending.

Spectroscopic evidence for mode mixing in styrene has
previously been observed and carefully detailed in the work
of Hollas et al.2–4 Here the ground state normal modes cor-
responding to torsion at 38 cm21 and out-of-plane bending at
199 cm21 become heavily mixed in the lowest excited sin-
glet state where their frequencies undergo a substantial shift
to 102 and 191 cm21. Confirmation of mode mixing as the
origin of this effect was provided by single vibronic level
fluorescence spectroscopy. Deuteration of styrene at theb
carbon was also found to slightly alter the extent of the mix-
ing. These same two modes, together with ring puckering,
are proposed to be strongly mixed in BCB-d5~cyclobutane!
although here the origin of the effect arises from a change in
the effective masses following selective deuteration rather
than a change in the force constants associated with elec-
tronic excitation.

V. CONCLUSION

Electronic spectroscopy has been used to characterize
the ground and first singlet excited states of benzylidenecy-
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clobutane. The observed torsional energy levels in the parent
compound as well as two deuterated isotopomers can each be
accurately reproduced by one-dimensional potential energy
functions which lead to essentially planar excited state con-
formations that undergo large amplitude motion and ground
state conformations with torsional angles of;25° and puck-
ered cyclobutane rings. These findings for the ground state
are consistent withab initio Hartree–Fock calculations. Al-
though multiple minima are found on the ground state poten-
tial energy surface they correspond to equivalent mirror im-
age conformations which are readily interconverted over low
energy barriers.

Although the spectrum of each isotopomer could be ac-
curately reproduced by one-dimensional analysis, a common
set of potential parameters could not be found that would
adequately reproduce the observed torsional levels of all
three species. This is taken as evidence for mixing of the
torsional mode with other low frequency modes of the same
symmetry. These include the cyclobutane ring puckering and
the vinyl group out-of-plane bend. The extent of the mixing
varies with isotopic substitution and is considerably different
in the cyclobutane deuterated derivative than in the phenyl
deuterated and undeuterated species.
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