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Number of Predictors and Multicollinearity:  

What Are Their Effects on Error and Bias in Regression? 

Multicollinearity, or collinearity, is often encountered in applied regression models, and 

occurs when two or more predictor variables are correlated. Multicollinearity becomes a 

problematic condition when it influences the inferences made about significance and parameter 

estimates. High levels of multicollinearity may lead to large variances in the least squares 

estimators of beta coefficients in the regression equation. It may also have unpredictable and 

inconsistent effects on parameter estimates and significance and may lead to biased results. 

Multicollinearity masks the true relationship of the predictor variables with the dependent 

variable, thereby undermining the unique variance explained by predictors in the model.  

The magnitude of correlation between the predictor variables has an important influence 

on the variance inflation factor (VIF). VIF is the reciprocal of tolerance (Dormann et al., 2013): 

𝑉𝐼𝐹𝑘 =
1

1 − (𝜌𝑋𝑘𝑋¬𝑘
)

2 , (1) 

Tolerance is 1 minus the proportion of variance a predictor variable shares with the other 

predictor variables in the regression model (shown here as the squared correlation between the 

predictor in question, 𝑋𝑘, and the other predictors in the model, 𝑋¬𝑘). Tolerance represents the 

proportion of variance in a predictor variable that is not shared or related to the other predictor 

variables. In the literature, a number of rules or criteria have been recommended to indicate 

when VIF or tolerance values are considered to be very high to the extent that it may bias the 

regression results. Sometimes a VIF of 10 is considered to be excessive or a VIF as low as 4 

have been used to indicate high levels of multicollinearity between the predictor variables. It is 
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important to understand the extent to which predictor variables are correlated with each other and 

with the outcome variable in the context of VIF and other factors that influence the variance of 

regression coefficients and the bias in the model. Kraha, Turner, Nimon, Zientek and Henson 

(2012) explained the role that predictor variables play in making the regression coefficients in 

conjunction with other factors such as correlation coefficients, β weights, and structure 

coefficients in order to interpret and correct for collinearity in light of theoretical and statistical 

significance.  

Previous research has already established that the correlations between predictor 

variables influences VIF and may introduce bias in the regression results (Azen, Budescu, 

Reiser, 2001; Johnson, 2001; Johnson & Lebreton, 2004; Kraha, et al., 2012). However, there are 

no specific guidelines for researchers to understand how the number of predictors, magnitude of 

inter-correlations between them and proportion of variance jointly explained in the outcome 

variable by the predictor variables influence the amount of VIF and bias in the regression model. 

In the present study, we systematically varied the sample size and analyzed parameter bias, 

model bias, rates of Type I and Type II error, and VIF values produced under various 

multicollinearity conditions with two, four, and six predictors. The objective of the present study 

is to provide specific guidance to applied researchers regarding the degree of multicollinearity 

that can be problematic for multiple regression depending on the number of predictors modeled 

and the degree of inter-correlations between them. 

Review of the Literature  

Multicollinearity is a common phenomenon that occurs in regression when two or more 

predictors are correlated with one other and commonly occurs in almost all regression-based 

https://doi.org/10.1080/03610918.2017.1371750
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procedures. Multicollinearity is a nuisance condition which impacts model development, 

estimation and interpretation especially when predictors share notably strong correlations. For 

instance, multicollinearity can make it difficult to parse out the unique contribution of each 

predictor variable towards explaining the dependent variable variance. Predictors are assumed to 

be non-collinear in a regression design (Lomax, 2007; Stevens, 2007). Hence, multicollinearity 

makes it difficult to evaluate the individual importance of each predictor in a model. Adding to 

this, high levels of multicollinearity do not allow unique estimates of the regression coefficients 

associated with predictors because the coefficients are interchangeable, making it difficult to 

assess the distinctive relationship between a predictor and the dependent variable relative to the 

relationship between another predictor and that same dependent variable (Gunst & Mason 1980; 

Marquardt & Snee 1975). As collinearity increases, the standard errors of the regression 

coefficients also increase making the coefficients less stable across samples and less 

representative of the population-level estimates. So multicollinearity not only affects the 

evaluation of predictor contributions but also makes regression coefficients unreliable (Gunst & 

Mason 1980; Marquardt & Snee 1975; O'Brien, 2007) because the coefficients are more likely to 

vary from sample to sample. This means the regression equation formed will be unstable across 

samples as well (Kutner, Nachtsheim, Neter, & Li, 2005). Related to this, Mason and Perreault 

(1991) conducted a Monte Carlo experiment which suggested the effect of multicollinearity on 

coefficient standard errors is a problem only when multicollinearity among predictors are 

extreme.  

Mela and Kopalle (2002) studied the effects of collinearity on the correlations, parameter 

inference, variable omission bias and diagnostic indices in regression. The authors suggested that 

https://doi.org/10.1080/03610918.2017.1371750
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positive and negative correlations of equal magnitude can have different effects on the inflation 

of parameter variance estimation and that one correlation structure can severely influence 

variable omission bias and have little effect on variance inflation whereas other correlation 

structure can have the opposite effects. So, to determine the consequences of multicollinearity it 

is important to examine an array of collinearity diagnostics - not just one. Using this strategy, 

Mela and Kopalle (2002) found that positive correlations between predictor variables yields less 

precise estimates, can influence coefficients to change signs and affect effect size of the model. 

However, negative correlations among predictor variables have greater influence on variable 

omission bias than equivalent positive correlations 

The degree of multicollinearity may be assessed either through careful analysis of a 

correlation matrix of the predictors used in the model, or by examining the variance inflation 

factor (VIF) for each predictor. In the literature, the VIF has been a common method of 

identifying multicollinearity. As the name suggests, VIF indicates how much of the variance in 

the dependent variable explained by the predictor variables is inflated. In other words, the VIF is 

directly related to the regression coefficient associated with a predictor variable, and it provides a 

clear assessment of the influence of collinearity on the estimated variance of the regression 

coefficient (O’Brien, 2007). A VIF of 8 suggests that (keeping all other factors constant) the 

variance of the regression coefficient associated with a particular predictor variable would be 8 

times greater than it would have been if the predictor variable had been linearly independent with 

the other predictor variables in the regression model. The VIF indicates the extent to which a 

predictor variable has a strong linear relationship with the other predictor variable(s) in an 

ordinary least square regression analysis and accounts for the inflation in the estimated 

https://doi.org/10.1080/03610918.2017.1371750
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regression coefficients when the predictor variables share a high correlation between them or the 

lack of independence between them. Though the VIF is easily produced in most statistical 

analysis software and is often consulted by applied researchers, the literature offers unclear 

guidance about which values for VIF are too large and how the researcher should respond 

(O'Brien, 2007).  

O’Brien (2007) provided recommendations to cope with the issue of multicollinearity. 

One way to deal with the issue of collinearity is to combine predictor variables that are 

conceptually similar and share high correlation into a single measure and then utilize the newly 

created measure in the regression model which would take care of collinearity created by the 

high correlation between the two variables and would usually provide a more reliable estimate of 

the variable of interest. Another way is to remove the collinear variable from the model. There 

are some general guidelines that have been followed in the literature for assessing when VIF is a 

cause of concern: 

• If VIF is greater than 10 then the predictor variables are highly correlated indicating high 

levels of multicollinearity and is a matter of concern (Bowerman & O’Connell, 1990). 

• If the average VIF is substantially greater than 1, then the regression coefficients and the 

models may be biased (Bowerman & O’Connell, 1990). 

Mason and Perreault (1991) examined how multicollinearity influences Type II error 

rates in addition to the accuracy of regression coefficients and associated standard errors. They 

varied the degree of collinearity, the values of true regression coefficients, sample size, and the 

model R2. However, they did not vary the number of predictor variables and kept it fixed at four. 

The results suggested that collinearity should be viewed along with power and its interaction 

https://doi.org/10.1080/03610918.2017.1371750
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with the sample size, the values of true regression coefficients and the overall fit of the model. 

The simulations results suggest that small sample size and low R2 interacts with high collinearity 

to produces inaccurate regression coefficients. The results also suggested that Type II error is 

high when sample size is small or the overall fit of the model is low and any combination of 

these factors along with high levels of collinearity makes it difficult to obtain reliable inferences. 

Blaze and Ye (2012) studied the effects of multicollinearity on the parameter estimates 

and standard errors in multilevel models by designing a Monte Carlo simulation study in which 

they included a two-level predictor model with correlation between level-1 and level-2 predictors 

and group-mean centering level-1 predictors. They varied the intra-class correlation coefficients, 

number of groups and cases per group. Their simulation findings were consistent with other 

simulation studies in the literature examining effects of multicollinearity in regression analysis. 

High levels of multicollinearity inflated the standard errors and the estimate of the intercept for 

the random slope component was biased when multicollinearity existed between level-1 

predictors. The fixed effects remained relatively stable even at high levels of multicollinearity. 

There was an increase in positive bias of standard error estimates with increase in inter-class 

correlation coefficient.  

The current simulation study adds to the regression literature on understanding the 

influence of predictors, multicollinearity, VIF and bias in several different meaningful ways. 

First, the study considers the effects of multicollinearity with both Type I and Type II error rates 

on parameter estimation bias, model bias and reported VIF values. Previous studies have not 

simultaneously examined the effects of different types of bias and VIF on parameters. Second, 

research has demonstrated that sample size is an important factor to consider when evaluating the 

https://doi.org/10.1080/03610918.2017.1371750
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robustness of regression results (Frank & Friedman, 1993; Jean, Kerneis & Porcher, 2008; 

Greenland, Sander, Schwartzbaum & Finkle, 2000). Kiers and Smilde (2007) found that the 

ordinary least square regression yielded best regression model results with sample size of 10, 20, 

and 50 data points. Kroll and Song (2013) studied the performance of four regression techniques 

(ordinary least squares, variance inflation factor screening, principal component regression, and 

partial least squares regression) to evaluate the impact of multicollinearity (by varying sample 

sizes, inter-correlations between predictor variables and model error variances) on different 

regression models. They found that the undesirable influences of multicollinearity are magnified 

at smaller sample sizes, higher correlations between predictor variables and larger unexplained 

or error variances. In the current study, the sample size was systematically varied according to 

the rules of thumb by Green (1991). Third, the number of predictor variables were varied to two, 

four and six. Fourth, the proportion of variance in the outcome variable explained by the 

predictor variables was systematically varied according to small, medium and large according to 

Cohen’s (1992) recommendations and was then used to calculate the model bias. Fifth, how 

much is the model and parameter bias when these factors interact with VIF. Sixth, the behavior 

of VIF was examined as a function of the correlations between the predictor variables, 

correlation between each predictor and outcome variable (proportion of variance explained; 

PVE), sample size, error rates (Type I and Type II), bias (model and parameter), and how the 

coefficients and standard errors change when these factors interact with VIF.  

Methods and Data 

The present study uses a Monte Carlo simulation design (Fan, Felsovalyi, Sivo, & 

Keenan, 2002) in which data is generated with known properties, analyzed using least squares 

https://doi.org/10.1080/03610918.2017.1371750
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multiple regression, and the results are analyzed to determine the effects of multicollinearity and 

the number of predictors in the model on significance, parameter estimates, and the VIF. Data 

sets are generated for analysis with one of the following regression equations: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀 , (2.a) 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝜀 , (2.b) 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5 + 𝛽6𝑋6 + 𝜀 . (2.c) 

In all data sets, the outcome variable is Y ~N(0, 1).  Data sets generated for Equation (2.a) had 

two predictor variables, 𝑋1 and 𝑋2; data sets for equation (2.b) had four predictors, 𝑋1 through 

𝑋4; and data sets for Equation (2.c) had six predictors, 𝑋1 through 𝑋6. In all cases, 𝑋𝑘 ~N(0, 1). 

Predictors were generated with four multicollinearity conditions, one in which the predictors are 

uncorrelated (𝜌𝑋𝑘𝑋¬𝑘
= 0), and correlations of .3, .6, and .9, as well. Predictors were generated to 

share .1, .3, and .5 of the outcome variable's variance, resulting in a small, medium, and large 

proportion of variance explained (PVE), respectively (Cohen, 1992).  

Simulated data sets were initially generated to reflect the rules of thumb recommended by 

Green (1991), where small samples contained n = 50 + 8m observations and medium samples 

contained n = 104 + m observations (where m = number of predictors), and where large samples 

contained n = 500 observations. The rules of thumb suggested by Green were used for the small 

and medium samples because of their prevalence in the literature. Preliminary findings indicated 

that the initial small sample sizes lacked the necessary statistical power (discussed in Results), 

thus the researchers used Green’s (1991) recommended medium sample of n = 104 + m 

observations as the small sample in this study, using n = 250 and n = 500 as the medium and 

large samples, respectively.  

https://doi.org/10.1080/03610918.2017.1371750
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Samples were then analyzed using PROC REG in SAS 9.4. For each of the 108 

experimental conditions, data was generated and analyzed 1000 times and the rates of Type I and 

Type II error were calculated. Model and parameter bias was also calculated as the difference 

between the parameter estimates produced by the regression procedure and the known value as a 

proportion of the known theoretical value. Model bias was calculated as 

𝐵𝑖𝑎𝑠𝑚𝑜𝑑𝑒𝑙 =
(𝐴𝑑𝑗𝑅2 − 𝑃𝑉𝐸)

𝑃𝑉𝐸
 , (3) 

where PVE is the known proportion of variance in the dependent variable jointly explained by 

the predictors which was used during data generation. Parameter bias was calculated as 

𝐵𝑖𝑎𝑠𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =
𝛽𝑋𝑘

− 𝜌𝑋𝑘𝑌

𝜌𝑋𝑘𝑌
 , (4) 

where 𝜌𝑋𝑘𝑌 is the known correlation between the predictor and the dependent variable, also used 

during data generation. These methods of calculating bias produce a value that indicates the 

degree to which the estimate is inflated or deflated as a proportion of the known value, where 

negative values indicate that the parameter has been underestimated and positive values indicate 

that the parameter has been overestimated. When Bias = 0, the estimate produced by the 

regression procedure matches the known value exactly. The Variance Inflation Factor (VIF) was 

also collected and analyzed across all iterations. 

Results 

Type I and Type II Error Rates 

Results indicate that neither multicollinearity nor number of predictors has an effect on 

the Type I error rate. Across all iterations and all conditions, the mean rate of Type I error for 

overall model significance was .049 (SD = .007), and the mean rate of Type I error for individual 

https://doi.org/10.1080/03610918.2017.1371750
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predictors was .049 (SD = .005). Both at the model and predictor levels, the observed Type I 

error rate was appropriate for the selected alpha of .05. The Type II error rate, however, was 

influenced both by multicollinearity and number of predictors (see Table 1).  

According to Green (1991), a small sample of n = 50 + 8m should provide sufficient 

power to detect a medium effect for the model as a whole, but not necessarily for its individual 

predictors, while a medium sample of n = 104 + m should be sufficient to evaluate the individual 

predictors, as well. The preliminary findings suggested that the rules of thumb offered by Green 

are insufficient to provide adequate power. The results in Table 1 indicate that Green’s 

recommended medium sample (used as the small sample in the present study) only provides 

adequate power to determine model significance when detecting a large effect (PVE = .5; Cohen, 

1992), but never performs well enough to correctly evaluate predictor significance under the 

conditions simulated. 

Researchers conducted logistic regression analysis to assess the relative contributions of 

simulated conditions to the prediction of making a Type II error both for the model and for the 

individual predictors in the model using the equation 

𝑃(𝑇𝑦𝑝𝑒𝐼𝐼) =
1

1 + 𝑒
−(𝑏0+𝑏1𝑃𝑉𝐸+𝑏2𝜌𝑋𝑘𝑋¬𝑘

+𝑏3𝑚+𝑏4𝑆+𝑏5𝐿+𝑏6(𝑚×𝜌𝑋𝑘𝑋¬𝑘
))

 . (5) 

In Equation (5), 𝑃𝑉𝐸 is the known proportion of variance in Y jointly explained by the predictors 

in the model; 𝜌𝑋𝑘𝑋¬𝑘
 is the known collinearity among predictors defined as the correlation 

between a given predictor (𝑋𝑘) and all other predictors in the model (𝑋¬𝑘); m is the number of 

predictors in the model; S and L are dummy-coded variables for small and large samples, 

respectively, comparing them to the un-coded medium samples; and 𝑚 × 𝜌𝑋𝑘𝑋¬𝑘
 represents the 

https://doi.org/10.1080/03610918.2017.1371750
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interaction between number of predictors and collinearity. The full model was significantly 

better at predicting Type II error for model F-tests than a constant-only model, 𝜒2(6, 𝑁 =

108,000) = 72,035.03, p < .001, increasing prediction accuracy from 61.6% to 84.9%. The full 

model was also significantly better at predicting Type II error for individual predictor t-tests than 

a constant-only model, 𝜒2(6, 𝑁 = 432,000) = 106,827.05, p < .001, increasing prediction 

accuracy from 79.3% to 85.2%. Logistic regression results for both model and predictor Type II 

error rates are shown in Table 2. 

As the proportion of the dependent variable’s variance explained by the predictors 

increases, the Type II error rate decreases substantially for both the regression model’s F-tests, 

Exp(B) < .001, and for individual predictors’ t-tests, Exp(B) = .002. Increased collinearity and 

additional predictors both increase the odds ratio of Type II errors, with Exp(B) = 1.267 and 

Exp(B) = 1.907 respectively for models, and with Exp(B) = 7.086 and Exp(B) = 1.853 

respectively for individual predictors. The interaction between increased collinearity and 

additional predictors appears to have a mitigating effect on Type II error, however, as the 

interaction term lowers the odds ratio with Exp(B) = .524 for models and Exp(B) = .890 for 

predictors. 

Model and Parameter Bias 

Simulation results indicate that both collinearity and number of predictors in the model 

are related to bias. The results in Table 3 demonstrate that, across all simulated conditions, the 

proportion of variance explained by the model was consistently underestimated by the regression 

procedure, M = -.816, SD = .131. Researchers used the linear regression shown in Equation (6),  

𝐵𝑖𝑎𝑠 = 𝛽0 + 𝛽1𝑃𝑉𝐸 + 𝛽2𝜌𝑋𝑘𝑋¬𝑘
+ 𝛽3𝑚 + 𝛽4𝑆 + 𝛽5𝐿 + 𝛽6(𝑚 × 𝜌𝑋𝑘𝑋¬𝑘

) + 𝜀 , (6) 

https://doi.org/10.1080/03610918.2017.1371750
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to analyze the degree to which simulated conditions explain observed model bias and parameter 

bias. The regression model was significant for models, F(6, 107993) = 11934.97, p < .001, 

explaining 39.9% of the variance in model bias. Dummy-coded variables for small and large 

sample sizes did not significantly contribute to the explanation of model bias, however, with 

t(107993) = -1.608, p = .108, and t(107993) = .145, p = .884, respectively. All other variables 

included in the model were significant at p < .001 and are listed in Table 4. Equation (6) also 

significantly explained 3.5% of the variance in predictor bias, with F(6, 431993) = 2622.19, 

p < .001. The proportion of variance explained (PVE) did not contribute significantly to 

parameter bias, t(431993) = -.225, p = .822. Dummy-coded variables for small and large sample 

sizes also did not significantly contribute to the explanation of parameter bias, t(431993) = -.172, 

p = .863, and t(431993) = .225, p = .822, respectively. All other simulation conditions 

significantly explained parameter bias, p < .001, and are listed in Table 4. 

In order to better understand the influence of the various conditions simulated on bias, 

researchers analyzed the mean and standard deviation of model and parameter bias values for 

each of the thirteen simulated conditions. Inspection of the values in Table 5 suggests that, as the 

proportion of variance in the dependent variable jointly explained by the predictors in the model 

increases, underestimation of the model’s adjusted R-squared is decreased (from M = -.938 to 

M = -.694) while the variability in mis-estimation of predictor coefficients is reduced (from 

SD = 2.390 to SD = .540). As collinearity increases, underestimation of the  

model’s adjusted R-squared decreases from M = -.909 to M = -.723 while the variability in 

model bias simultaneously increases (from SD = .145 to SD = .220). By contrast, 

underestimation of predictor parameters steadily increases as collinearity increases (from 

https://doi.org/10.1080/03610918.2017.1371750
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M = -.005 to M = -.732), while no clear pattern emerges from the standard deviations of 

parameter bias values. As the number of predictors in the model increase, underestimation and 

variability in bias simultaneously increase both for the model’s adjusted R-squared (from 

M = -.785, SD = .186, to M = -.839, SD = .203) as well as for predictor coefficients (from 

M = -.273, SD = .877, to M = -.544, SD = 1.731), though the problem appears more severe for 

predictor estimates. Likewise, as sample sizes increase underestimation and variability in bias 

simultaneously decrease both for the model’s adjusted R-squared (from M = -.817, SD = .250, to 

M = -.815, SD = .150) as well as for predictor coefficients (from M = -.472, SD = 2.009, to 

M = -.470, SD = .956), though the reduction in the variability of parameter estimates is most 

pronounced. 

Variance Inflation Factor (VIF) 

Simulation results indicate that both collinearity and number of predictors in the model 

are related to VIF. The results shown in Table 6 indicate that VIF values reported by the 

regression procedure are greatest when collinearity is greatest, and that reported VIFs are highest 

within collinearity conditions when more predictors are included in the model. Interestingly, 

none of the observed VIF values approached 10, the commonly used rule of thumb for indication 

of problematic collinearity (O’brien, 2007). In order to analyze the extent to which simulation 

conditions explain the observed VIF values, researchers conducted the linear regression 

𝑉𝐼𝐹 = 𝛽0 + 𝛽1𝑃𝑉𝐸 + 𝛽2𝜌𝑋𝑘𝑋¬𝑘
+ 𝛽3𝑚 + 𝛽4𝑆 + 𝛽5𝐿 + 𝛽6(𝑚 × 𝜌𝑋𝑘𝑋¬𝑘

) + 𝜀 . (7) 

The regression model was significant, F(6, 431993) = 165082.58, p < .001, explaining 

69.6% of the variance in parameter VIF. While 𝜌𝑋𝑘𝑋¬𝑘
 has, perhaps unsurprisingly, the highest 

estimated coefficient in the explanation of VIF (see Table 7), examination of the standardized 
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beta-weights indicates that the interaction between collinearity and number of predictors may be 

more influential than collinearity alone. In fact, while increasing the number of predictors may 

explain a slight reduction in the observed VIF, the interaction term overshadows this reduction 

by the magnitude of the increase in VIF that it explains. Only the proportion of variance in the 

dependent variable jointly explained by the predictors (PVE) did not significantly explain the 

variance in observed VIF values, t(431993) = -.482, p = .630. All other parameters were 

significant at p < .001. 

Discussion 

The present study investigates how the number of predictors in a multiple linear 

regression model interacts with collinearity to affect the rates of Type I and Type II error, 

parameter estimation bias, and reported VIF values. Although the findings indicate that the 

number of predictors is unrelated to the Type I error rate, it affects every other outcome assessed 

in this study. Increasing the number of predictors by one nearly doubles the odds of making a 

Type II error under the conditions simulated. The number of predictors in the model inflated the 

odds of Type II error in determining the significance of the regression model more than any other 

condition simulated except for small samples of n = 104 + m. Collinearity inflated the odds of 

Type II errors in determining predictor significance more than three times as much as did the 

number of predictors, though the interaction between number of predictors and collinearity 

reduced the odds of Type II error somewhat, mitigating the problem of error inflation slightly. 

The number of predictors included in a regression model was also significantly related to 

the underestimation of both the proportion of variance in the dependent variable explained by the 

regression model as well as in the beta weights of the predictors included in the regression 

https://doi.org/10.1080/03610918.2017.1371750
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model. The interaction between number of predictors and collinearity behaves differently in the 

calculation of the regression model’s adjusted R2 than it does in the estimation of predictors’ beta 

weights, however. In determining the proportion of variance explained by the model, the 

interaction between collinearity and number of predictors increases bias (or, more accurately, 

decreases the magnitude of underestimation) by the same amount that the number of predictors 

increase the magnitude of underestimation on its own. Thus, in the presence of collinearity, 

increasing the number of predictors simultaneously increases and decreases model bias, greatly 

mitigating its effect. When estimating predictor beta weights, however, the number of predictors, 

collinearity, and the interaction between number of predictors and collinearity all decrease bias 

(again, more accurately, increase the magnitude of parameter underestimation), greatly 

compounding the problems of collinearity. 

In the absence of collinearity, the number of predictors included in the model has no 

noticeable effect on VIF. In fact, according to the results of the linear regression analyses 

reported in Table 7, the number of predictors slightly reduces the VIF values reported for each 

predictor. In the presence of collinearity, however, VIF values inflate substantially. Increased 

VIF values can be explained primarily by collinearity and by the interaction between number of 

predictors and collinearity. In this case, it would be more appropriate to say that the number of 

predictors, m, slightly mitigates the VIF inflation caused by collinearity and the interaction 

effect, rather than the interaction effect mitigating the two main effects. 

Interestingly, comparison of the means and standard deviations of predictor bias across 

simulated conditions (Table 5) indicates that, as the number of predictors’ increases, the standard 

deviation of parameter bias increases, as well. This suggests that, while across repeated 
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regression analyses, one could expect the beta weights of predictors to be underestimated by a 

greater magnitude than comparable models with fewer predictors, there is no way to be certain 

whether the beta weights for any single analysis are underestimated. The increased variance in 

parameter bias for models with more predictors makes the results of any single regression even 

more unpredictable than collinearity, itself. Taken together, the results of the present study 

emphasize the importance of parsimony, particularly when predictors are correlated. 
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Table 1 
Type II Error Rate for the Model (Predictors in Parentheses) by Known Proportion of Variance Explained (PVE) and Collinearity Conditions 

Sample m PVE = .1 PVE = .3 PVE = .5  Sample m PVE = .1 PVE = .3 PVE = .5 

   𝜌𝑋𝑘𝑋¬𝑘
= 0      𝜌𝑋𝑘𝑋¬𝑘

= .3  

Small 2 .915 (.924) .487 (.641) .060 (.224)  Small 2 .901 (.931) .397 (.686) .024 (.266) 

 4 .935 (.945) .810 (.875) .460 (.734)   4 .905 (.939) .627 (.889) .146 (.764) 

 6 .946 (.949) .884 (.919) .694 (.860)   6 .921 (.946) .716 (.921) .288 (.880) 

Medium 2 .847 (.880) .146 (.340) .001 (.013)  Medium 2 .795 (.874) .055 (.370) .000 (.019) 

 4 .920 (.934) .556 (.776) .103 (.493)   4 .872 (.936) .243 (.803) .002 (.522) 

 6 .939 (.943) .741 (.880) .359 (.746)   6 .887 (.938) .368 (.890) .006 (.763) 

Large 2 .724 (.789) .004 (.057) .000 (.000)  Large 2 .665 (.812) .000 (.096) .000 (.001) 

 4 .867 (.910) .208 (.611) .003 (.194)   4 .790 (.919) .021 (.660) .000 (.228) 

 6 .918 (.934) .492 (.796) .041 (.522)   6 .866 (.944) .075 (.829) .000 (.581) 

   𝜌𝑋𝑘𝑋¬𝑘
= .6      𝜌𝑋𝑘𝑋¬𝑘

= .9  

Small 2 .864 (.924) .305 (.761) .008 (.393)  Small 2 .866 (.948) .221 (.894) .000 (.752) 

 4 .905 (.942) .480 (.910) .034 (.827)   4 .884 (.944) .340 (.945) .003 (.912) 

 6 .913 (.952) .589 (.937) .065 (.901)   6 .915 (.953) .388 (.948) .007 (.938) 

Medium 2 .776 (.907) .023 (.495) .000 (.053)  Medium 2 .721 (.932) .006 (.807) .000 (.500) 

 4 .854 (.941) .088 (.857) .000 (.662)   4 .771 (.946) .028 (.931) .000 (.875) 

 6 .861 (.943) .163 (.918) .000 (.838)   6 .841 (.952) .044 (.935) .000 (.921) 

Large 2 .582 (.863) .002 (.200) .000 (.000)  Large 2 .557 (.927) .000 (.670) .000 (.221) 

 4 .711 (.931) .000 (.772) .000 (.413)   4 .626 (.947) .000 (.904) .000 (.788) 

 6 .772 (.943) .004 (.874) .000 (.721)   6 .672 (.944) .001 (.926) .000 (.896) 
Note. “Small” samples contained n = 104 + m observations (where m = number of predictors), “Medium” samples contained 250 observations, and “Large” 
samples contained 500 observations for each simulation run. Model error rates are calculated for n = 1000 runs per simulated condition. Predictor error rates 
include all predictors included in 1000 simulation runs per condition (i.e., n = 2000 for each m = 2 condition, n = 4000 for each m = 4 condition, and n = 6000 for 
each m = 6 condition). Significance of model F-tests and predictor t-tests were determined at p < .05. 
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Table 2 
Estimates for Logistic Regression of Type II Error for Regression Models and Predictors 

 Model  Predictors 

Predictor B(SE) Wald Exp(B)  B(SE) Wald Exp(B) 

𝑏0 1.709 (.045)  1428.14 5.525  .151 (.022)  45.30 1.163 

𝑃𝑉𝐸 -15.109 (.092)  26894.56 .000  -6.041 (.031)  38706.82 .002 

𝜌𝑋𝑘𝑋¬𝑘
 .236 (.075)* 10.02 1.267  1.958 (.039)  2575.50 7.086 

m .646 (.010)  4004.52 1.907  .617 (.005)  18194.52 1.853 

S 1.538 (.024)  3972.47 4.656  .703 (.012)  3647.86 2.021 

L -.916 (.024)  1502.404 .400  -.663 (.010)  4271.23 .515 

𝑚 ∗ 𝜌𝑋𝑘𝑋¬𝑘
 -.645 (.018)  1343.65 .524  -.116 (.009)  180.46 .890 

Note. n = 108,000 for logistic regression of model error and n = 432,000 for logistic regression of predictor error. 

𝑏0  is the logistic regression constant term, 𝑃𝑉𝐸  is the known proportion of variance in the dependent 

variable jointly explained by the predictors in the model, 𝜌𝑋𝑘𝑋¬𝑘
 is collinearity expressed as the known 

correlation between a given predictor (𝑘) and all other predictors (¬𝑘 ) in the model, m is the number of 
predictors in the regression model, S and L are dummy coded variables comparing small samples (n = 104 + m; 
Green, 1991) and large samples (n = 500), respectively, to un-coded medium samples (n = 250), and 𝑚 ∗ 𝜌𝑋𝑘𝑋¬𝑘

 

is an interaction term for number of predictors and collinearity. 

* p < .01; all other parameters p < .001 
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Table 3 
Theoretical Bias for the Model (Predictors in Parentheses) by Known Proportion of Variance Explained (PVE) and Collinearity Conditions 

Sample m PVE = .1 PVE = .3 PVE = .5  Sample m PVE = .1 PVE = .3 PVE = .5 

   𝜌𝑋𝑘𝑋¬𝑘
= 0      𝜌𝑋𝑘𝑋¬𝑘

= .3  

Small 2 -.960 (-.079) -.844 ( .034) -.754 (-.002)  Small 2 -.941 (-.256) -.813 (-.239) -.684 (-.238) 

 4 -.972 ( .023) -.926 (-.005) -.873 ( .011)   4 -.937 (-.463) -.859 (-.474) -.768 (-.475) 

 6 -.984 (-.014) -.952 (-.026) -.918 (-.014)   6 -.954 (-.591) -.870 (-.594) -.797 (-.601) 

Medium 2 -.950 (-.005) -.853 (-.011) -.755 (-.008)  Medium 2 -.927 (-.201) -.806 (-.231) -.676 (-.231) 

 4 -.976 (-.002) -.926 ( .012) -.879 (-.014)   4 -.951 (-.447) -.857 (-.472) -.765 (-.475) 

 6 -.988 (-.045) -.947 ( .000) -.920 (-.013)   6 -.949 (-.589) -.871 (-.592) -.791 (-.600) 

Large 2 -.948 ( .001) -.846 ( .013) -.753 (-.006)  Large 2 -.937 (-.240) -.809 (-.237) -.676 (-.231) 

 4 -.973 ( .026) -.925 ( .004) -.877 (-.007)   4 -.952 (-.480) -.859 (-.474) -.764 (-.475) 

 6 -.985 ( .006) -.950 ( .003) -.917 ( .002)   6 -.963 (-.617) -.876 (-.603) -.790 (-.599) 

   𝜌𝑋𝑘𝑋¬𝑘
= .6      𝜌𝑋𝑘𝑋¬𝑘

= .9  

Small 2 -.908 (-.336) -.771 (-.385) -.611 (-.382)  Small 2 -.907 (-.488) -.718 (-.474) -.527 (-.474) 

 4 -.929 (-.646) -.794 (-.649) -.655 (-.645)   4 -.898 (-.731) -.735 (-.733) -.544 (-.731) 

 6 -.938 (-.746) -.813 (-.756) -.678 (-.753)   6 -.922 (-.818) -.725 (-.817) -.548 (-.818) 

Medium 2 -.923 (-.385) -.758 (-.372) -.604 (-.377)  Medium 2 -.902 (-.466) -.724 (-.481) -.530 (-.476) 

 4 -.939 (-.660) -.791 (-.643) -.652 (-.643)   4 -.898 (-.726) -.729 (-.733) -.543 (-.731) 

 6 -.926 (-.746) -.802 (-.750) -.668 (-.750)   6 -.911 (-.818) -.725 (-.819) -.547 (-.819) 

Large 2 -.922 (-.376) -.762 (-.377) -.603 (-.377)  Large 2 -.910 (-.484) -.716 (-.474) -.532 (-.477) 

 4 -.928 (-.640) -.789 (-.641) -.648 (-.642)   4 -.909 (-.733) -.724 (-.730) -.537 (-.729) 

 6 -.934 (-.750) -.801 (-.751) -.670 (-.751)   6 -.905 (-.815) -.723 (-.818) -.541 (-.818) 
Note. “Small” samples contained n = 104 + m observations (where m = number of predictors; Green, 1991), “Medium” samples contained 250 observations, and 
“Large” samples contained 500 observations. Values reported in the table are means of n = 1000 simulation runs per condition. Mean predictor bias include all 
predictors from 1000 simulation runs per condition (i.e., n = 2000 for each m = 2 condition, n = 4000 for each m = 4 condition, and n = 6000 for each m = 6 

condition). Model bias = 
(𝐴𝑑𝑗𝑅2−𝑃𝑉𝐸)

𝑃𝑉𝐸
 and predictor bias = 

𝛽𝑋𝑘
−𝜌𝑋𝑘𝑌

𝜌𝑋𝑘𝑌
 where 𝑃𝑉𝐸 and 𝜌𝑋𝑘𝑌 are known. 
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Table 4 
Linear Regression Estimates for the Explanation of Model Bias and Parameter Bias 

 Model  Predictors 

Predictor b(SE) t p  b(SE) t p 

𝛽
0
 -.992 (.002) -429.283 < .001  .017 (.013) 1.259 .208 

𝑃𝑉𝐸 .608 (.003) 214.814 < .001  -.003 (.014) -.225 .822 

𝜌𝑋𝑘𝑋¬𝑘
 .107 (.004) 29.248 < .001  -.432 (.022) -19.751 < .001 

m -.025 (.000) -52.037 < .001  -.029 (.003) -11.660 < .001 

S -.002 (.001) -1.608 .108  -.001 (.005) -.172 .863 

L .000 (.001) .145 .884  .001 (.005) .225 .822 

𝑚 ∗ 𝜌𝑋𝑘𝑋¬𝑘
 .025 (.001) 29.412 < .001  -.074 (.004) -16.659 < .001 

Note. n = 108,000 for linear regression of model bias and n = 432,000 for linear regression of predictor bias. 𝛽0 is 
the linear regression constant term, 𝑃𝑉𝐸 is the known proportion of variance in the dependent variable Y jointly 
explained by the predictors in the model, 𝜌𝑋𝑘𝑋¬𝑘

 is collinearity expressed as the known correlation between a 

given predictor (𝑘) and all other predictors (¬𝑘) in the model, m is the number of predictors in the regression 
model, S and L are dummy coded variables comparing small samples (n = 104 + m; Green, 1991) and large 
samples (n = 500), respectively, to un-coded medium samples (n = 250), and 𝑚 ∗ 𝜌𝑋𝑘𝑋¬𝑘

 is an interaction term 

for number of predictors and collinearity. Model bias = 
(𝐴𝑑𝑗𝑅2−𝑃𝑉𝐸)

𝑃𝑉𝐸
 and predictor bias = 

𝛽𝑋𝑘
−𝜌𝑋𝑘𝑌

𝜌𝑋𝑘𝑌
. 
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Table 5 
Comparison of Mean and Standard Deviation of Model Bias and Predictor Bias 
across Simulated Conditions 

Simulated 
Conditions 

Model  Predictors 

n M SD  n M SD 

All Conditions 108,000 -.816 .196  432,000 -.471 1.494 

PVE = .1 3600 -.938 .205  144,000 -.471 2.390 

= .3 3600 -.816 .137  144,000 -.471 .834 

= .5 3600 -.694 .157  144,000 -.472 .540 

𝜌𝑋𝑘𝑋¬𝑘
 = 0 2700 -.909 .145  108,000 -.005 2.188 

= .3 2700 -.846 .169  108,000 -.495 1.090 

= .6 2700 -.786 .192  108,000 -.693 .918 

= .9 2700 -.723 .220  108,000 -.732 1.340 

m = 2 3600 -.785 .186  72,000 -.273 .877 

 = 4 3600 -.824 .195  144,000 -.460 1.340 

 = 6 3600 -.839 .203  216,000 -.544 1.731 

n = 104 + m 3600 -.817 .250  144,000 -.472 2.009 

n = 250 3600 -.816 .174  144,000 -.471 1.322 

n = 500 3600 -.815 .150  144,000 -.470 .956 
Note. 𝑃𝑉𝐸 is the known proportion of variance in the dependent variable Y jointly explained 
by the predictors in the model, 𝜌𝑋𝑘𝑋¬𝑘

 is collinearity expressed as the known correlation 

between a given predictor (𝑘) and all other predictors (¬𝑘) in the model, m is the number 

of predictors in the regression model. Model bias = 
(𝐴𝑑𝑗𝑅2−𝑃𝑉𝐸)

𝑃𝑉𝐸
 and predictor bias = 

𝛽𝑋𝑘
−𝜌𝑋𝑘𝑌

𝜌𝑋𝑘𝑌
. 
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Table 6 
Mean VIF of Predictors (Standard Deviation in Parentheses) by Known Proportion of Variance Explained (PVE) and Collinearity Conditions 

Sample m PVE = .1 PVE = .3 PVE = .5  Sample m PVE = .1 PVE = .3 PVE = .5 

   𝜌𝑋𝑘𝑋¬𝑘
= 0      𝜌𝑋𝑘𝑋¬𝑘

= .3  

Small 2 1.010 (0.015) 1.010 (0.015) 1.010 (0.014)  Small 2 1.111 (0.068) 1.115 (0.066) 1.108 (0.066) 

 4 1.029 (0.024) 1.030 (0.024) 1.030 (0.025)   4 1.238 (0.103) 1.243 (0.108) 1.237 (0.104) 

 6 1.049 (0.032) 1.048 (0.031) 1.048 (0.031)   6 1.320 (0.122) 1.325 (0.124) 1.320 (0.126) 

Medium 2 1.004 (0.006) 1.004 (0.006) 1.004 (0.005)  Medium 2 1.105 (0.043) 1.104 (0.045) 1.103 (0.045) 

 4 1.013 (0.011) 1.012 (0.010) 1.012 (0.010)   4 1.220 (0.067) 1.222 (0.067) 1.219 (0.064) 

 6 1.021 (0.013) 1.021 (0.013) 1.021 (0.013)   6 1.288 (0.076) 1.282 (0.077) 1.286 (0.075) 

Large 2 1.002 (0.003) 1.002 (0.003) 1.002 (0.003)  Large 2 1.102 (0.030) 1.101 (0.030) 1.102 (0.029) 

 4 1.006 (0.005) 1.006 (0.005) 1.006 (0.005)   4 1.210 (0.046) 1.209 (0.045) 1.212 (0.045) 

 6 1.010 (0.007) 1.010 (0.006) 1.010 (0.006)   6 1.272 (0.052) 1.272 (0.052) 1.271 (0.053) 

   𝜌𝑋𝑘𝑋¬𝑘
= .6      𝜌𝑋𝑘𝑋¬𝑘

= .9  

Small 2 1.592 (0.191) 1.597 (0.195) 1.583 (0.190)  Small 2 5.427 (0.962) 5.462 (1.000) 5.395 (0.986) 

 4 2.038 (0.287) 2.047 (0.289) 2.046 (0.289)   4 7.954 (1.523) 7.899 (1.432) 7.920 (1.448) 

 6 2.253 (0.333) 2.252 (0.326) 2.246 (0.326)   6 8.924 (1.591) 8.845 (1.619) 8.912 (1.621) 

Medium 2 1.575 (0.124) 1.577 (0.124) 1.574 (0.120)  Medium 2 5.338 (0.626) 5.320 (0.618) 5.306 (0.607) 

 4 1.998 (0.181) 1.991 (0.180) 2.003 (0.180)   4 7.708 (0.923) 7.681 (0.912) 7.667 (0.917) 

 6 2.180 (0.207) 2.180 (0.204) 2.182 (0.204)   6 8.604 (1.042) 8.596 (1.027) 8.611 (1.031) 

Large 2 1.569 (0.083) 1.564 (0.085) 1.565 (0.089)  Large 2 5.278 (0.437) 5.276 (0.417) 5.291 (0.428) 

 4 1.985 (0.126) 1.980 (0.121) 1.988 (0.123)   4 7.624 (0.644) 7.669 (0.661) 7.643 (0.636) 

 6 2.141 (0.140) 2.152 (0.140) 2.156 (0.142)   6 8.492 (0.695) 8.486 (0.704) 8.472 (0.725) 
Note. “Small” samples contained n = 104 + m observations (where m = number of predictors; Green, 1991), “Medium” samples contained 250 observations, 
and “Large” samples contained 500 observations. Values reported in the table are calculated from the output of 1000 simulation runs per condition, thus 
n = 2000 for each m = 2 condition, n = 4000 for each m = 4 condition, and n = 6000 for each m = 6 condition. 
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Table 7 
Linear Regression Estimates for the Explanation of Parameter VIF 

Predictor b(SE) β t p 

𝛽
0
 .372 (.015) — 25.643 < .001 

𝑃𝑉𝐸 -.007 (.015) .000 -.482 .630 

𝜌𝑋𝑘𝑋¬𝑘
 3.403 (.024) .393 142.668 < .001 

m -.115 (.003) -.059 -42.171 < .001 

S .085 (.006) .014 14.308 < .001 

L -.030 (.006) -.005 -5.047 < .001 

𝑚 ∗ 𝜌𝑋𝑘𝑋¬𝑘
 .781 (.005) .478 160.493 < .001 

Note. n = 432,000. 𝛽0 is the linear regression constant term, 𝑃𝑉𝐸 is the 
known proportion of variance in the dependent variable Y jointly 
explained by the predictors in the model, 𝜌𝑋𝑘𝑋¬𝑘

 is collinearity expressed 

as the known correlation between a given predictor (𝑘) and all other 
predictors ( ¬𝑘 ) in the model, m is the number of predictors in the 
regression model, S and L are dummy coded variables comparing small 
samples (n = 104 + m; Green, 1991) and large samples (n = 500), 
respectively, to un-coded medium samples (n = 250), and 𝑚 ∗ 𝜌𝑋𝑘𝑋¬𝑘

 is 

an interaction term for number of predictors and collinearity. 
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