
Bowling Green State University Bowling Green State University

ScholarWorks@BGSU ScholarWorks@BGSU

Master of Technology Management Plan II
Graduate Projects Student Scholarship

Winter 12-10-2014

Developing a Wireless Sensor Network Programming Language Developing a Wireless Sensor Network Programming Language

Application Guide Using Memsic Devices and LabVIEW Application Guide Using Memsic Devices and LabVIEW

Xiao Xie
Bowling Green State University

Follow this and additional works at: https://scholarworks.bgsu.edu/ms_tech_mngmt

 Part of the Mechanical Engineering Commons

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know!

Recommended Citation Recommended Citation
Xie, Xiao, "Developing a Wireless Sensor Network Programming Language Application Guide Using
Memsic Devices and LabVIEW" (2014). Master of Technology Management Plan II Graduate Projects. 10.
https://scholarworks.bgsu.edu/ms_tech_mngmt/10

This Dissertation/Thesis is brought to you for free and open access by the Student Scholarship at
ScholarWorks@BGSU. It has been accepted for inclusion in Master of Technology Management Plan II Graduate
Projects by an authorized administrator of ScholarWorks@BGSU.

https://scholarworks.bgsu.edu/
https://scholarworks.bgsu.edu/ms_tech_mngmt
https://scholarworks.bgsu.edu/ms_tech_mngmt
https://scholarworks.bgsu.edu/student_scholarship
https://scholarworks.bgsu.edu/ms_tech_mngmt?utm_source=scholarworks.bgsu.edu%2Fms_tech_mngmt%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=scholarworks.bgsu.edu%2Fms_tech_mngmt%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://bgsu.az1.qualtrics.com/jfe/form/SV_82fhWfkYQAvjIEu
https://scholarworks.bgsu.edu/ms_tech_mngmt/10?utm_source=scholarworks.bgsu.edu%2Fms_tech_mngmt%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages

Developing a Wireless Sensor Network Programming Language Application

Guide Using Memsic Devices and LabVIEW

Xiao Xie

A Major Project Report

Submitted to the Graduate College of Bowling Green State University in

partial fulfillment of the requirement for the degree of

Master of Technology Management

December 2014

Committee:

Dr. David Border, Chair

Dr. Sri Kolla

Dr. Todd C. Waggoner

1

TABLE OF CONTENTS

TABLE OF CONTENTS .. 1

LIST OF TABLES .. 3

LIST OF FIGURES .. 4

Acknowledgement .. 5

Abstract ... 6

Chapter I Introduction ... 7

Context of the Problem ... 7

Statement of Problem .. 10

Statement of Objectives .. 10

Description of the Product .. 10

Product Performance Specification ... 12

User Specification ... 12

Significance of the Project .. 12

Definitions of Terms ... 13

Chapter II Literature Review .. 14

Introduction ... 14

History of Wireless Sensor Network Development .. 14

Survey on Wireless Sensor Network Hardware and Software Platform ... 15

2

i. Wireless Sensor Node (Mote) .. 15

ii. Operating System .. 16

Application, Research and Development Trend ... 17

Survey on Existing Wireless Sensor Network Study Materials .. 18

Chapter III Methodology .. 21

Introduction ... 21

Restatement of Problem .. 21

Restatement of Objectives .. 22

Experimental Environment Installation .. 22

Sensor Data Collection ... 22

i. MoteView ... 22

ii. LabVIEW Plug and Play Instrument Driver ... 27

NesC and TinyOS Programming .. 29

Chapter IV Results and Findings .. 32

Data Collection and Statistical Analysis ... 32

NesC Language and TinyOS Resources ... 36

Chapter V Summary, Discussion and Recommendations ... 38

Summary of Guide Development ... 38

Guide Potential Limitations and Recommendations ... 40

Reference .. 42

Appendix ... 44

3

LIST OF TABLES

Table 1.1 Results on sections course contents and learning and teaching 4 ... 9

Table 1.2 Contents of the project guide .. 11

Table 4.1 Data from sensor node 4643 & 4647 created on July 16th, 2014 ... 33

Table 4.2 Summary of statistics generated by Excel .. 36

Table 4.3 Summary of WSN guide potential content ... 40

4

LIST OF FIGURES

Figure 1.1 Global installed industrial wireless sensing points (2011-2016) ... 7

Figure 3.1 MoteView data tab .. 23

Figure 3.2 MoteView command tab ... 24

Figure 3.3 MoteView chart tab ... 25

Figure 3.4 MoteView health tab ... 25

Figure 3.5 MoteView histogram tab ... 26

Figure 3.6 MoteView scatterplot tab ... 26

Figure 3.7 MoteView topology tab ... 27

Figure 3.8 LabVIEW read data and display health interface .. 28

Figure 3.9 MoteWorks sample programs directory .. 30

Figure 4.1 Place where the two nodes locate .. 32

Figure 4.2 MoteView interface to display node data .. 32

Figure 4.3 Charts of data from node 4643 & 4647 created on July 16th, 2014 .. 34

Figure 4.4 Histogram of voltage from node 4643 & 4647 created on July 16th, 2014 34

Figure 4.5 Histogram of temperature from node 4643 & 4647 created on July 16th, 2014 35

Figure 4.6 Histogram of pressure from node 4643 & 4647 created on July 16th, 2014 35

5

Acknowledgement

 I am using this opportunity to express my gratitude to everyone who supported me with my MTM

graduation project. I would never have been able to complete my project without the help of my

committee members, help from friends and my family.

 I would like to express my thanks to my project advisor, Dr. David Border, for his great patience

and guidance for my research work. I am thankful to Dr. David Border to provide me valuable study

materials, constructive criticism and advice when I was developing my project.

 I would like to thank my committee members, Dr. Sri Kolla and Dr. Todd C. Waggoner for their

patience and advice throughout my project development. I also would like to thank Dr. Alan Atalah and

Ms. Heidi for their help to organize my defense and graduation plan.

 Finally, I would like to thank my parents and my friends for their support and encouragement

with best wishes.

6

Abstract

 The principal objective of this project is to develop a wireless sensor network (WSN)

programming language application guide for junior and senior undergraduate students in College of

Technology, Architecture and Applied Engineering in Bowling Green State University. Memsic device,

MoteWorks and LabVIEW software are used to conduct experiments in developing WSN applications

after both software and hardware platform are verified to be usable with experimental and statistical

analysis. The guide is divided into six chapters including both theoretical knowledge and practical

experiments in WSN area. Programs, both in nesC language and LabVIEW, are improved from previous

work, tested to run successfully and noted in detail.

7

Chapter I Introduction

Context of the Problem

 With the rapid development of Micro-Electro-Mechanical System (MEMS), System on Chip

(SOC), Wireless Communication and Low-Power Embedded System Technology, Wireless Sensor

Network (WSN) became prominent in recent years. As one type of sensor networks, WSN has been

applied in many industries like health care, agriculture, military and environmental monitoring. The ON

World’s survey of 216 industrial automation professionals (Hatler, 2013), in collaboration with ISA, Hart

Communication Foundation, and the Wireless Industrial Networking Alliance (WINA), shows the market

of industrial WSN had doubled from the year 2010 to the year 2012. In the next following years, the

installed wireless industrial field device will still increase as shown in Figure 1.1.

Figure 1.1 Global installed industrial Wireless Sensing Points (2011-2016)

 Since the marketplace is booming and expanding, the demand of engineers and specialists in the

WSN area has been increasing. The education in the WSN field becomes pressing for the students in

colleges, who aspire to working in WSN industry.

Memsic manufactured wireless motes and sensors provide an easy path for the students to learn

the physical environment of WSN, since the development kits are easy to obtain and can be available in

8

most Electrical and Computer Engineering labs; Its Crossbow Wireless Sensor Network Kit provides for

the installations of TinyOS, MoteWorks and MoteView, which allow programming of motes and

observation of data from sensors; LabVIEW, as a graphical programming language application, can be

linked to a WSN and be used to view the output of the sensors on a computer display. Researchers have

developed some tutorials to introduce WSN programming application but not a comprehensive and detail

guide for students who are not so familiar with WSN environment. In allusion to practical difficulties

with the actual learning situation of college students, this project developed a programming guide to help

students better understand the fundamentals of WSN environment and programming.

NesC (Network Embedded System C) language programming is the basic programming skill

when people learn WSN. However, the novice programmers always face difficulties when learning the

nesC, C or other programming languages. The Study of the Difficulties of Novice Programmers of the

Tampere University of Technology (Lahtinen, Ala-Mutka, & Järvinen, 2005) shows the current situation

that students have problems and lack of interests to programming in the universities. The survey shown in

Table 1.1, indicates that the different aspects of learning difficulties for the university students.

9

Table 1.1 Results on sections course contents and learning and teaching.

The survey asked the students’ and teachers’ response on a five-point scale and gave the average

scores and the standard deviation of scores to see the score distribution. From the Learning and Teaching

Programming part, it shows while working alone on programming coursework, students learn issues

about programming. In that condition, reference materials are particularly important to give instructions

to students. Among all the materials that help in learning programming, the survey shows example

programs are the most useful materials. These findings in the survey lead this project to focus on the right

direction when considering how to structure the content of the guide.

10

Statement of Problem

 This project is aimed to develop a WSN language application programming guide for

junior/senior level undergraduate students and graduate students. The project is achieved by using

Memsic’s wireless hardware devices, Memsic software development platform and LabVIEW. The ability

to program wireless nodes and gateway boards helps future students to gain skills needed in the growing

WSN marketplace. It will motivate the students to better understand the logic and algorithm of

programming. The programming interface includes the use of virtual instruments (VIs), since LabVIEW

is acknowledged as a strong tool to supervise the status of sensor boards and to obtain real-time sensor

data.

Statement of Objectives

 This project has seven main objectives to achieve. They are described by procedures as below.

1. Study the history and trend of WSN development.

2. Investigate the features of existing WSN hardware/software platform.

3. Survey the weakness and limitations of the existing WSN guide for both

 educational and business use.

4. Obtain and verify environmental variable data.

5. Explain and note existing sample programming applications.

6. Develop new applications and assess the performance.

7. Integrate above objectives and other findings into the guide.

Description of the Product

This project is aimed to develop a WSN programming guide. Examples and sample programs are

given in the guide to help students to clarify the concepts and give students an opportunity to learn how to

program by themselves. The structure of this guide is planned as shown in the table below.

11

Contents of the Guide

Chapter 1 Introduction to Computing Basics

Chapter 2 Wireless Sensor Network Technology History and Features

Chapter 3 Wireless Sensor Network Hardware Features: Memsic

Chapter 4 Wireless Sensor Network Software Features: Tiny OS & MoteWorks

Chapter 5 NesC Language Programming

Chapter 6 Sensor Data Display in LabVIEW

Appendix

Table 1.2 Contents of the project guide

Chapter 1 covers computer memory and C programming basics. It helps the students who have no

knowledge of these topics or help those who need to refresh their memory.

Chapter 2 briefly presents the development of history of WSN technology. The application fields

in the use of education, business and industries are briefly discussed in general. It also presents the current

research situation and future trends.

Chapter 3 focuses on the Memsic WSN development kit, including Iris motes, environmental

sensor boards and USB interface boards. It gives a brief specification explanation of the development kit.

The detailed specifications of each part are provided in the Appendix section.

Chapter 4 introduces the environment of software platform MoteWorks and Tiny OS including

Cygwin (a Unix-like command language interface), a programming complier, etc. It involves in the

installation, parameter settings, other general introductions and preparations before utilizing the software

platform.

12

Chapter 5 explains how to use nesC language to program and compile and install codes into

motes. Sample programs provided in the MoteWorks are explained and noted. Other programming

examples are verified and explained in this chapter.

Chapter 6 explores the linking of WSN to LabVIEW VIs and displays the sensor data.

The appendices are designed to provide all reference material required for the topics covered in

the guide.

Product Performance Specification

 This guide is intended to be used for college students in junior/senior or graduate level, who

should have taken some prerequisite courses and build the basic knowledge of programming and

networking. It not only provides the fundamental principles of programming but also guide the students

how to program by themselves and observe the results by visual interfaces. It is be a valuable tutorial for

college-level students who are interested in WSN.

User Specification

 Readers of this guide should have had taken some prerequisite courses like Instrumentation,

Digital Communication and Networking, and Digital Electronic Components and Systems. Knowledge of

WSN would be helpful but is no necessary. Although this guide is written for the students who have no

experience in WSN. For the chapter of nesC language programming, a basic knowledge of programming

in C or any other languages is required. For the chapter of WSN application linked to LabVIEW, a basic

knowledge of LabVIEW is also required. There are plenty of sources available online to help understand

programming and LabVIEW.

Significance of the Project

 In the reality of rapid development of WSN technology and increasing of WSN products, the

demand of educated talents in WSN field has been rising. There is no specific course available in BGSU

related to WSN and there is no well-organized and integrated study guide for the students to understand

13

WSN structure and programming skills. This current situation makes it difficult to train people for work

in WSN industries. This project is to give a possible solution by introducing a valuable WSN

programming application guide. By comparing with existing WSN study materials, the project finds their

weakness and makes the supplements into its own guide.

Definitions of Terms

MEMS- Micro-Electro-Mechanical System is a technology that utilizes small devices that can combine

electrical and mechanical components.

Algorithm- In programming, algorithm is a step by step procedure for calculations.

Memory- In computing, memory stores programs and data for a temporary or permanent use.

Instrumentation- Measure and control process variables in the production and manufacturing field.

Cygwin- An operating system environment like UNIX and provides a command line interface that can be

used in Window systems.

14

Chapter II Literature Review

Introduction

This chapter covers the theoretical background of WSN, the current research situation, the future

development trend and existing WSN guides. Firstly, it gives a brief introduction of history of WSN

development. Then the existing products of hardware device and software platform are discussed. Also

the application areas, current research and development trends are presented. Since this project is to

develop a WSN programming guide, an exploration of existing study materials about WSN is introduced

by developing a comparison list with the developing valuable guide. Overall, the literature review is to

give general WSN knowledge to educate the readers, to learn methodology and gain data from previous

research and to find support resources for the project.

History of Wireless Sensor Network Development

On the basis of “An Overview on Wireless Sensor Networks” (Nack, 2010) at the Institute of

Computer Science, Freie University Berlin, the history of WSN development can be divided into four

stages. WSN technology can be traced back to some projects in Cold-War Era in the United States. For

instance, the Sound Surveillance System (also known as SOSUS) was aimed to track Soviet submarines

by placing acoustic sensors underwater at key locations as listening posts by US Navy. In the early 1980s,

the Distributed Sensor Network (DSN) program was initiated at Defense Advanced Research Projects

Agency (DARPA). DSN consists a set of sensors, which are intelligent and distributed into different areas

to obtain and analyze environmental variables from data collected. All the sensors were supposed to

operate autonomously and collaborate with each other. Since personal computers and workstations were

not popularized and the size of sensors is quite large during that period, the development of many

potential DSN projects was limited. However DARPA’s efforts, contributions and achievements in DSN

drew the interests of US military due to warfare purpose in the late 1980s. The large replenishment of a

fund gave the scientists more possibilities to develop sensor network technology. Therefore, WSN

technology made a huge and fast progress in the early 1990s. The latest stage of WSN development lasts

15

till present. With the rapid development of computing, Micro-Elecrtro-Mechanical System (MEMS) and

other technologies, the sensors are becoming smaller in size and cheaper in price. This advancement

provides WSN the opportunities for commercial use in more areas. Companies like Memsic and

Crossbow Technology begins to produce wireless motes, sensors and software support. The

standardization of protocols also becomes more and more mature. The standards like Zigbee, 802.15.4

and 6LoWPAN are built and commonly used in WSN communications.

Survey on Wireless Sensor Network Hardware and Software Platform

i. Wireless Sensor Node (Mote)

A sensor node (also known as a mote) is the fundamental unit of a WSN. It is used to collect

information from sensors, process commands and communicate with other sensor nodes. A sensor node

usually has five components. They are the controller, transceiver, memory, power source and one or more

sensors.

Referring to the “Mini Hardware Survey” (Bokareva, 2014) and “Embedded WiSeNts Platform

Survey” (WSN Research Group, 2014) maintained by the Imperial College, London, there are currently

numerous available sensor nodes for the use of education, research and commerce. From the previous

study, information is provided about BTnode, COOKIES, EPIC mote, Telos, SunSPOT and the others.

Since the limitation of available sources in the Electronics and Computer Engineering Technology (ECET)

lab is limited, the project mainly focuses on the Iris mote, which is accessible in the ECET lab.

Compared with other sensor boards like MICA2, MICAz and TelosB, Iris has an improved radio

range. The outdoor range is over 300 meters and indoor range is more than 50 meters. Iris is a 2.4 GHz

mote coming with the processor/radio board of the XM2110CA. XM2110CA is built on the low-power

microcontroller ATmega1281. It can be used to run sensor application and process network or radio

communications stack simultaneously. The Iris has a 51-pin expansion connector which supports

16

interfaces, such as, Analog Inputs, Digital I/O, Serial Peripheral Interface and others. It provides the

ability to connect the Iris motes with a large number of external devices. For example, in the Crossbow

product, the sensor board MTS420 is used with its Light, Temperature, Humidity, Barometric Pressure

and Seismic Sensors from Memsic. By utilizing the sensor boards, environmental variable data can be

monitored with the help of MoteWorks software, which was developed by Crossbow Technology. Also,

Iris can be performed as a base station by plugging with MIB510 or MIB520 USB interface board. The

MIB510/MIB520 provides the functions of data transfer and in-system programming to Iris node. The

detail specification of Iris, MTS420 and MIB520 is provided in the appendix.

ii. Operating System

The Operating System of WSN is aimed to manage WSN hardware resource by providing a

collection of software application. The Operating System of WSN is not as complex as Windows,

Android, Mac OS and other general Operating Systems because of the typical requirements and

constraints of WSN hardware. The current sensor nodes can be run in some specific WSN OSs such as

Contiki, LiteOS, Nano-RK, TinyOS and so forth. The Memsic Wireless Sensor Network Kit available in

the ECET lab in BGSU provides the installation of TinyOS as the software platform to support the Iris

node.

TinyOS was firstly developed by UC Berkeley as part of DARPA-sponsored Neural Engineering,

Science and Technology (NEST) program, and initially released in 2000. It is in support of WSN as a free

and open-source operating system ran on the computer. “TinyOS features a component-based architecture,

which enables rapid innovation and implementation while minimizing code size as required by the severe

memory constraints inherent in sensor networks.” (Crossbow, 2007). It contains four main components

including network protocols, distributed services, sensor drivers and data acquisition tools.

NesC is a component-based, event-driven programming language. It is used to develop

applications for TinyOS. A nesC application consists of one or more components linked together. These

17

components form an integrated and executable application. NesC has two types of components, module

and configuration. Module provides application codes and realizes one or more interfaces. The provider

of the interface must declare two groups of functions, one is “command” and the other one is “event”. If

one component wants to use the command in an interface, it must realize the event in the interface.

Configuration is a component to wire other components, connect the interfaces used by different

components. Simply, the programmers develop a nesC application by creating a group of modules and

linking them together through a configuration.

NesC defines the concurrency model for tiny OS. TinyOS executes only one application one time.

The components which form an application are from both system itself and custom components for

specific application users. When running an application, there are two threads of execution: one is task

operation and the other one is hardware event handler. Tasks are delayed functions and once they are

scheduled, they will run till end and are not allowed to preempting each other in the execution. Hardware

event handler is used to process the hardware interruption. Although hardware event handlers also need to

be completed, they can preempt the executions of other tasks and hardware event handlers. If a command

or an event wants to be executed as part of hardware event handler, the programmer must declare that by

using the keyword of “async” (Crossbow, 2007).

Application, Research and Development Trend

WSN is currently a growing research field which involves in multi-disciplinary, highly cross and

highly integrated knowledge. It combines sensor technology, embedded computing technology, modern

network and wireless communication technology, distributed information processing technology, etc. It

enables real-time monitoring, perception and gathering of all kinds of environment or object information

through integrated microprocessors. This information can be sent wirelessly to the user terminal. WSN

has a very broad application prospect in military defense, biological and medical industries, agriculture,

urban management, environmental monitoring, disaster relief, anti-terrorism and remote

18

monitoring/controlling in dangerous areas. It draws the attention to the academic and industrial fields in

many countries (Buratti, Conti, & Verdone, 2009).

Survey on Existing Wireless Sensor Network Study Materials

This project is aimed to develop a relevant WSN programming application guide. To strengthen

the superiority of the guide, the existing and reachable WSN study materials are read and investigated,

including books, lectures, journals and other online resources. By comparing the materials with each other

and summarize the main content, the general views and emphasizes was established which are discussed

in my project. This section provides the summaries of different materials below and attaches a

comparison list in the appendix.

 “Wireless Sensor Networks Research and Application” (Wang) contains four main parts,

including the general introduction, current research situation, research trends and typical

application. It talks about the history of development and features of WSN, current WSN

products like “smart dust” and motes. When discussing research trends, the guides explain in

several aspects, including protocols, network management, data management and application

support service. To show the application of WSN, this guide illustrates the examples of

moisture sensor system, “Sensicast Art” to monitor and protect valuable works of arts,

“Senera” to monitor the transportation infrastructure and so on.

 “Wireless Sensor Network Programming Using TinyOS” (He, 2012) firstly introduce the

architecture of WSN. It also talks about the components and interfaces, tasks and concurrency,

compilation and tool chain in the programming. It gives two programming examples; one is

Anti-Theft module and the other one is Radio Message module. It provides the codes without

a detailed explanation. At last, it shows the tutorial how to install TinyOS and gives some

sample exercises without the solutions.

19

 “Wireless Sensor Networks: Motes, NesC and TinyOS” (Schonwalder & Harvan, 2007)

firstly introduces the general information of WSN, such as, definitions, application, hardware

devices, research topics and constraints. Secondly, it introduces the TinyOS and nesC with

the simplest application of “Blink”. At last the guide shows how to connect WSN to the

internet and it involves lots of prospective knowledge of network administration.

 “Wireless Sensor Networks: Technology Roadmap” (Desai, Jain & Merchant) explains WSN

theories, including the history of WSN, current and future research and development trends

and applications. It provides a good reference for students to learn WSN background

knowledge but lacks practical uses.

 “Crossbow: MoteWorks Getting Started Guide” (Greene & Khamphavong, 2007) mainly

presents the installation of MoteWorks, concepts of TinyOS and nesC. It also gives the

simple application of “Blink”. It uses XSniffer to view sensor data through the network. At

last the guide gives the data logging application with some descriptions by words.

 “TinyOS Tutorial” (Fok, 2004) introduces MICA2 mote, MTS300CA/MTS400/420 sensor

board and MIB510 programming board. These devices are available in ECET lab in BGSU.

Then it also shows the installation and configuration of TinyOS. NesC programming is

discussed a little bit by giving some examples. The Network Communication part mainly

explains how to send and receive a message.

In addition, another project was accomplished by a graduate named Omar El Aridi with the help

of Dr. David Border in Bowling Green State University. “Developing and Designing Undergraduate

Laboratory Wireless Sensor Network Exercises” (Aridi, 2010) mainly included five labs to help students

familiar with WSN starter kit, understand the basic skills how to program the nodes and to obtain the

sensory data.

This project mainly helps the student understand the coding logic and algorithm before utilizing

the programming applications. It has some overlapping parts with Mr. Aridi’s work but the core

20

significance of this project is to develop a valuable study guide of WSN not a WSN lab manual and the

core content of this project is the programming part with detail codes (Aridi, 2010) (Border, 2012).

In conclusion, the guides existed currently are mostly fragmentary and not well-organized. Most

guides are focusing either on the introduction to the hardware platform or software environment. Some

guides introduce the hardware devices which are not available in the ECET lab in BGSU. Some guides

are aimed to train students the programming skills but do not come with adequate examples. This current

situation causes the inconvenience to start learning WSN from fundamentals. Students will easily get

confused by moving the study of one guide to another and feel difficult to understand the programming

principles without practical application. This project is trying to provide a possible solution to this issue to

help students study Wireless Sensor Network more effectively.

21

Chapter III Methodology

Introduction

This chapter has the restatement of problems and objectives, which were firstly introduced in

Chapter 1. With the clarification of problems and objectives, data collection and experimental procedures

in this project are further explored. Experimental environment installation is introduced firstly. In the data

collection part, environmental variables including temperature, pressure, and humidity and so on, are

measured by wireless sensors and observed in the data acquisition tool, MoteView and LabVIEW. The

cost, time and the amount of data needed are determined. Some explanations about how data is analyzed

and interpreted are also included in the data collection section. Furthermore, principles of nesC

programming are presented. The sample program provided in MoteWorks is explained with the use of

helpful notes. The sample applications are debugged and ran and the results are observed and verified on

the motes.

Restatement of Problem

 This project is aimed to develop a WSN language application programming guide for

junior/senior level undergraduate students and graduate students. The project is achieved by using

Memsic’s wireless hardware devices, Memsic software development platform and LabVIEW. The ability

to program wireless nodes and gateway boards helps future students to gain skills needed in the growing

WSN marketplace. It will motivate the students to better understand the logic and algorithm of

programming. The programming interface includes the use of virtual instruments (VIs), since LabVIEW

is acknowledged as a strong tool to supervise the status of sensor boards and to obtain real-time sensor

data.

.

22

Restatement of Objectives

 This project has seven main objectives to achieve. They are described by procedures as below.

1. Study the history and trend of WSN development.

2. Investigate the features of existing WSN hardware/software platform.

3. Survey the weakness and limitations of the existing WSN guide for both

 educational and business use.

4. Obtain and verify environmental variable data.

5. Explain and note existing sample programming applications.

6. Develop new applications and assess the performance.

7. Integrate above objectives and other findings into the guide.

Experimental Environment Installation

The Crossbow’s MoteWorks CD-ROM provides the installation of the experimental environment.

It is compatible with Microsoft Windows XP. The main software packages, which are included in the CD-

ROM and are used in the project, are Cygwin, Programmer’s Notepad, and MoteView. Other packages

are recommended to be installed to keep the integrity of the environment. Further installation guide

advice can be found in the “MoteWorks Getting Started Guide”.

Sensor Data Collection

i. MoteView

In this project, MoteView is used to monitor data from wireless sensors. By comparing different

data from different sensors, MoteView's environmental sensor readings can be verified. MoteView can

automatically discover the wireless nodes when connecting the live sensor network to a local PC. The

node list shows with ID and name at the left side of the interface. It has seven tabs in the main window.

23

 The data tab includes the column of voltage, humidity, pressure and other parameters from the

sensor boards. By right clicking the column, the unit of the values can be converted.

Figure 3.1 MoteView data tab

24

 The command tab can modify the data rate and obtain the 64-bit ID of a node. It can also change

the LED status on the node.

Figure 3.2 MoteView command tab

25

 Chart tab shows graphs of data with the time changing.

Figure 3.3 MoteView chart tab

 Health tab shows health packets readings from the node.

Figure 3.4 MoteView health tab

26

 Histogram tab shows the data by the bar chart. It is an easy way to observe the distribution of

sensor values.

Figure 3.5 MoteView histogram tab

 Scatterplot tab shows the comparison of two different data types. It provides the ability to

determine the correlation of two data types.

Figure 3.6 MoteView scatterplot tab

27

 Topology tab allows the users to observe and modify the location of nodes on the network map.

Figure 3.7 MoteView topology tab

ii. LabVIEW Plug and Play Instrument Driver

LabVIEW, as a graphical programming language, provides the specific driver to allow users link

a WSN application to LabVIEW and view the output data from the sensor. It provides a series of sample

applications with different functions like reading data and display health, WSN Check Timeout, WSN

Check Packet Type. By viewing the data obtained from LabVIEW, the project demonstrates if the results

match the data obtained in the MoteView. Since the LabVIEW program provided in the drive is not

particularly used for Memsic Device, programs needed to be revised and improved to fit into the project

data collection (National Instruments, 2013).

28

Figure 3.8 LabVIEW read data and display health interface

For industrial and commercial work, in the data collection process, the cost, time and the amount

of data need to be determined. In this project, the hardware/software platform and its cost is not of interest.

Because data from sensor boards can be obtained immediately, the project can set up different groups of

the time in different dates to sample real-time environmental variables with some placebo groups

measured by instruments.

 Sample variables from different sensor boards are compared based on their mean, standard

deviation and correlation. This data analysis process verifies if the sensor boards work well or not,

demonstrate if LabVIEW programming revised is correct or not, and obtain reliable data when running

nesC applications.

 The formulas which are used in the analysis are provided below (Lane, 2014).

29

 Sample Mean

 (1)

 Sample Standard Deviation

 (2)

 are the sample values and is the sample mean, N stands for the size of the

sample.

Other statistics like median, skewness and regression can be calculated by using Microsoft Excel

or Statcrunch. Visual graphs like bar chart, scatter plot and histogram can also be either viewed in

MoteView or created in Statcrunch.

NesC and TinyOS Programming

Memsic Sensor Network Kit comes with a plenty of sample nesC programming applications.

Programmer’s Notepad, the IDE (Integrated Development Environment) of nesC programming, shows

the directory of applications provided. By simply expanding one of the application’s directories, five files

including Makefile, Makefile.component, “nc.” of application’s configuration, “nc.” of application’s

module and README are shown.

30

Figure 3.9 MoteWorks sample programs directory

The general steps to create a simple nesC program are provided as below:

1. To create the Makefile: Makefile is to define how to compile and connect the source files to

general an executable file, and to define the dependencies between the source files.

2. To create Makefile.component: Makefile.component is to define the sensor board which will

be used and the application component.

3. To create a configuration: The configuration is to link the different modules.

4. To create a module: The module is to type in the programming codes and provide the

application’s function.

5. To compile and install the program into a mote: The way to compile the codes in the

Programmer’s Notepad is to select “Tools” then “make iris” and the output will be displayed

in the “Output” window. The way to install the codes into a mote with programming board is

to select “Tools” then “shell”.

The “Blink” application is a basic application to toggle the LED on the mote on each clock

interrupt of 1 second. It has three main files. The detail codes are provided in the appendix (Levis, 2006).

31

“Blink.nc” is the configuration of the “Blink” application. It starts with the keyword

“Configuration” and the real content of the configuration is followed by “implementation”. In this

application, “Main”, “BlinkM”, “SingleTimer” and “LedsC” are the components used. “Main” is the first

component executed in the TinyOS application and it must be included in a TinyOS application. The

“StdControl” is used to initial and launch a common interface of the TinyOS components. The little

arrows in the “Blink.nc” mean to combine interfaces of components at both sides. “BlinkM.Timer ->

SingleTimer.Timer;” means combine the interface “Timer” of “BlinkM” with the interface “Timer” of

“SingleTimer”. “Blink.Timer” uses the interface “Timer” and “SingleTimer.Timer” achieves the interface

“Timer”. “BlinkM.Leds -> LedsC;” means “BlinkM.Leds -> LedsC.Leds;”.

“BlinkM.nc” is to achieve the function that toggles the red LED when a Timer fires.

“SingleTimer.nc” is to achieve the function as a timer.

For this project, the possibility to improve some sensing applications is discussed. Firstly the

application to read sensor data from the sensor board is modified and created. The application to send the

message that contains sampling sensor data to programming board through the port needs to be developed.

Finally, the project is trying to display the sampling data message on PC.

In conclusion, this chapter restated the problem statement and objectives of the project. It also

gives a guide about how to set up the experimental environment. The data gained from sensor boards is

analyzed and interpreted by using statistical tools. The tools to collect data are MoteView and LabVIEW;

the tools to analyze data are Excel and Statcrunch. This chapter also provided an overview of the

procedures to develop a simple nesC application and how to compile and install the application.

32

Chapter IV Results and Findings

Data Collection and Statistical Analysis

 To verify the accuracy of the sensor boards for the future uses in the applications, the data is

collected by choosing different data types within two different nodes. The unit of each type of data can be

modified as well. All the data is obtained every 6 minutes in a total one hour in the same place sharing the

same environment.

I

Figure 4.1 Place where the two nodes locate

 The data acquisition tool is MoteView provided by Crossbow. MoteView also provides visual

tools to directly observe data floating over a specific period. Further statistical analysis within or between

sensor boards is processed after the data collection is completed.

Figure 4.2 MoteView interface to display node data

33

Table 4.1 Data from sensor node 4643 & 4647 created by July 16
th
, 2014

Data by ID

Time

Temperature/C Light Intensity/Lux Voltage/V Pressure/Mba

4643 4647 4643 4647 4643 4647 4643 4647

6:20AM 25.4 25.39 33.81 33.81 2.82 2.85 983.99 983.19

6:26AM 25.81 25.77 35.65 35.65 2.81 2.85 983.87 983.12

6:32AM 26.12 26.05 41.17 43.01 2.8 2.83 983.88 983

6:38AM 26.34 26.24 64.17 64.17 2.79 2.83 983.76 983.1

6:44AM 26.52 26.42 71.53 75.21 2.79 2.83 983.75 983

6:50AM 26.64 26.55 75.21 78.89 2.78 2.82 983.74 982.93

6:56AM 26.79 26.65 86.25 89.93 2.78 2.81 983.69 982.9

7:02AM 26.87 26.69 93.61 100.97 2.78 2.81 983.72 982.96

7:08AM 26.94 26.74 100.97 108.83 2.77 2.81 983.83 983.11

7:14AM 26.98 26.8 104.65 113.85 2.76 2.81 983.8 982.94

7:20AM 26.92 26.82 104.65 108.33 2.76 2.81 983.99 983.05

34

Figure 4.3 Charts of data from node 4643 & 4647 created on July 16
th
, 2014

Figure 4.4 Histogram of voltage from node 4643 & 4647 created on July 16
th
, 2014

35

Figure 4.5 Histogram of temperature from node 4643 & 4647 created on July 16
th
, 2014

Figure 4.6 Histogram of pressure from node 4643 & 4647 created on July 16
th
, 2014

 The line chart is the scatterplot connected by lines and the data is observed in a specific order

(followed by time in this case). The histogram is to represent the data distribution. The X axis represents

the range of the values. The Y axis represents the percentage that a certain value occurred. The

histograms above are generated by MoteView Histogram tab. They are generated form the continuous

data, which is not exactly the same as the eleven sampling data in Table 4.1. From the visual graphs

above, the shape of the line chart and the distribution of the histogram of two-sensor nodes’ data are

almost the same with an acceptable tolerance. Some of the line charts look like that the data floating is

large just because the interval of Y axis is large. For light intensity, the graphs are in a positive skew

because the sunrise caused the room to brighten.

 A more accurate demonstration of sensor node accuracy is shown by the statistical analysis that

includes the calculations of the range, the sample mean, the sample standard deviation, and so forth. The

36

data processing tool used is Microsoft Excel. It provides a number of functions to generate the statistics

automatically by creating the data sheet and selecting the processing data. Some formulas of calculations

are provided in the previous chapter as a reference. The mean, standard deviation and the range between

Min and Max of temperature, voltage and pressure are nearly the same when comparing the same statistic

between two nodes. The standard deviations of temperature, voltage and pressure are low. That indicates

that each value is pretty close to the mean. For light intensity, the differences of statistical results are not

quite small but the overall performance of light sensors keeps the same. In conclusion, the performances

of these two nodes are effective and parallel.

Column/Unit Mean Std. dev. Range Min Max Variance n

4643tem/C 26.484545 0.51912164 1.58 25.4 26.98 0.26948727 11

4647tem/C 26.374545 0.46684823 1.43 25.39 26.82 0.21794727 11

4643vol/V 2.7854545 0.019164361 0.06 2.76 2.82 0.00036727273 11

4647vol/V 2.8236364 0.015666989 0.04 2.81 2.85 0.00024545455 11

4647light/lux 77.513636 29.988978 80.04 33.81 113.85 899.33879 11

4643light/lux 73.788182 27.218208 70.84 33.81 104.65 740.83084 11

4643pres/Mba 983.82 0.10305338 0.3 983.69 983.99 0.01062 11

4647pres/Mba 983.02727 0.093283536 0.29 982.9 983.19 0.0087018182 11

Table 4.2 Summary of statistics generated by Excel

NesC Language and TinyOS Resources

 Investing the available resources for educational use is a crucial process before conducting this

project and writing the guide. There are plenty of books, journals, guides or websites giving references of

nesC programming. Some of them are segmented and not so organized; some of them are not easily

37

understandable because of the lack of detail explanations about terms and commands. That is the reason

this project is initialized and that makes the difficulty to understand nesC codes when writing the

explanations of applications. The following content provides several effective resources to learn

nesC/TinyOS to make a supplement of this project.

 TinyOS official website, tinyos.net, provides the instruction how to install TinyOS and

programming manual.

 Wikipedia provides some explanations about terms and some basic concepts of nesC.

 Memsic Company provides the data sheet of motes/sensors and the download of WSN software.

 A number of PowerPoint slides are available online with the explanation of nesC concepts and

simple applications.

38

Chapter V Summary, Discussion and Recommendations

Summary of Guide Development

 This project to develop a nesC language application guide is firstly proposed and planned with

the instruction of Dr. David Border. Before the writing of this study guide, the first stage to investigate

the current development and potentials related to the project topic is necessary. The development of WSN

history, the current research trends, applications, available hardware/software platforms and available

educational resources are investigated through all kinds of resources. The hardware/software platforms

have to be verified to be accessible to students in ECET laboratory, College of Technology, Architecture

& Applied Engineering, BGSU. Then the guide outline is firstly established with 6 chapters.

 Chapter 1, Introduction to Computing explains the memories used in the Iris mote, which is

applied when learning the WSN hardware platform and OTAP. It also explains C programming basics.

This content is not available in most WSN guides but necessary to refresh the users’ memory to get

prepared before learning WSN

 Chapter 2 introduces some background knowledge of WSN developments. The related

knowledge can be found in many online articles about WSN introduction. So this chapter is briefly

written and the readers can obtain more by searching on Google.

 Chapter 3 covers WSN hardware platform and get readers familiar with the Iris mote and other

boards. The hardware features are summarized in this chapter. The detailed specifications are available in

Memsic website and they are attached in the appendix.

 Chapter 4 covers WSN software platform and get readers familiar with TinyOS/nesC. Some of

the concepts are firstly introduced in the guide like module, configuration, interface, which is applied in

chapter 5 for programming. Chapter also briefly introduces MoteWorks Starter Kit without the detailed

explanations how to install and use the software packages, such as MoteView, MoteConfig, Cygwin, etc.

Since MoteWorks Getting Started Guide provided by Crossbow explains how to install MoteWorks and

39

software’s functions. In addition, Mr. Omar’s project (Aridi, 2010) did a great work about how to set

parameters, utilize user interfaces, or run MoteView, MoteConfig, Programmer Notepad and Cygwin. It

also covers the WSN protocols and standards. Therefore, the readers can refer to the above two materials

to better familiar with WSN software environment. For Xmesh networking, the Crossbow Xmesh Manual

gives detailed explanations.

 Chapter 5, as the main part of this guide, covers nesC programming fundamental rules. NesC 1.3

Language Reference Manual (Gay, Levis, Culler & Brewer, 2014) is a comprehensive manual to

introduce all the nesC unique grammars and some grammars shared with C language. It describes many

terms and conceptions not easily understood because the readers may not have a good understanding in C

language. That makes difficulties to learn nesC programming for readers. This chapter summarizes the

basic programming rules and avoids using abstruse descriptions to explain the terms or conceptions which

may be confusing. Combined with example programs, this chapter covers programming codes with

detailed notations. Following the notations, the readers can understand how the programming rules are

implemented into the real programs. It introduces some library modules which are not easily understood

and develops the diagrams of the relationship between components to help readers clearly understand the

interactions of different components and interfaces.

 Chapter 6 covers the introduction of LabVIEW and example programs to display sensor data. The

default program provided with the Crossbow Xmesh Driver is not exactly suitable for MTS400CC sensor

boards. This chapter provides the revision of the original programs and two additional programs found in

the National Instruments forum. All the programs share the same logic from data acquisition and

processing to data display. This chapter gives the detailed procedures of data flow in the block diagram

for the readers’ future improvement and development of WSN sensor data monitoring system.

40

 During the whole period of this guide development, keeping reviewing and revising the drafts are

important to make the guide better. The following table shows the important WSN concepts and features

included in the guide or not.

Table 5.1 Summary of WSN guide potential content

Guide Potential Limitations and Recommendations

 Considering the length of the guide, it cannot fully contain the programming rules of nesC

language. There are still a number of commands which are be useful in other nesC applications. The

users can find other educational resources as reference. Also, because of the limitations of

hardware/software platforms available in ECET lab, nesC programming cannot be applied to non-Memsic

wireless nodes. Other trials of nesC programming in other devices are helpful to practice programming

skills. The Crossbow WSN Starter kit is just compatible with Windows XP. However, Windows XP is no

longer supported from Microsoft. Considering the documents and system safety, seeking other WSN

software platforms which are compatible with Window 7 or 8 will be recommended. A previous guide

written by Mr. Omar El Aridi can be considered as a supplement of this guide. Unlike this guide, which is

41

more suitable for junior/senior students who have programming background knowledge, Mr. Aridi’s work

concentrates on conducting non programming lab activities.

42

References

1. Aridi, E. O. (2010). Developing and Designing Undergraduate Laboratory Wireless Sensor

Network Exercises. Bowling Green, Ohio: Bowling Green State University.

2. Bokareva, T. (2014). Mini Hardware Survey. Retrieved 2014, from

http://www.cse.unsw.edu.au/~sensar/hardware/hardware_survey.html

3. Border, D. (2012). Developing and Designing Undergraduate Laboratory. Proceedings of

American Society for Engineering Education Annual Conference.

4. Buratti, C., Conti, A., & Verdone, R. (2009, 8 31). An Overview on Wireless Sensor Networks

Technology. Open Access Sensors, pp. 6870-6872.

5. Crossbow. (2007). In MoteWorks Getting Started Guide (p. 32).

6. Desai, U. B., Jain, B. N., & Merchant, S. N. (2007). Wireless Sensor Networks: Technology

Roadmap. Retrieved 2014, from

https://www.iith.ac.in/~ubdesai/WSN_Roadmap_Final_%20Report.pdf

7. Fok, C.-L. (2004, 9). TinyOS Tutorial. Retrieved 2014, from

http://www.cs.bme.hu/~sl/mitmot/files/tos_tutorial.pdf

8. Gay, D., Levis, P., Culler, D., & Brewer, E. (2014). nesC 1.3 Language Reference Manual.

Retrieved 2014, from

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved

=0CDYQFjAC&url=http%3A%2F%2Fwww.tinyos.net%2Fdist-2.0.0%2Ftinyos-

2.0.0beta1%2Fdoc%2Fnesc%2Fref.pdf&ei=EyXLU-

rfEdGNyASWxILoBw&usg=AFQjCNEIvL41UX0Joag146qbLHewLCgAOg&sig2=QxJR

9. Greene, C., & Khamphavong, B. (2007). MoteWorks Getting Started Guide. Retrieved 2014,

from http://www.radford.edu/nsrl/creu1011/PowerPoints/MoteWorks.pdf

10. Hatler, M. (2013). Industrial Wireless Sensor Networks:Trends and developments. Retrieved 11

14, 2013, from International Society of Automation:

www.isa.org/InTechTemplate.cfm?template=/ContentManagement/ContentDisplay.cfm&Content

ID=90824

11. He, J. (2012, 3). Wireless Sensor Network Programming Using TinyOS. Retrieved 2014, from

http://web.cse.ohio-state.edu/~heji/TinyOSTutorial_Mar2013.pdf

12. Lahtinen, E., Ala-Mutka, K., & Järvinen, H. (2005). A study of the difficulties of novice

programmers. ITiCSE '05 Proceedings of the 10th annual SIGCSE conference on Innovation and

technology in computer science education, pp. 14-18.

13. Lane, D. (2014). Introduction to Statistics. Retrieved 1 10, 2014, from Online Statistics Education:

An Interactive Multimedia Course of Study: http://onlinestatbook.com/2/index.html

14. Levis, P. (2006). TinyOS Programming. Retrieved 2014, from

http://csl.stanford.edu/~pal/pubs/tinyos-programming.pdf

43

15. Nack, F. (2010). An Overview on Wireless Sensor Networks. Institute of Computer Science

(ICS), Freie Universität Berlin.

16. National Instruments. (2013, 10 30). Developing LabVIEW Plug and Play Instrument Drivers.

Retrieved 12 22, 2014, from National Instruments: http://www.ni.com/white-paper/3271/en/

17. Schonwalder, J. (2007, 4). Wireless Sensor Networks: Motes,NesC and TinyOS.

18. Wang, W. (n.d.). Wireless Sensor Networks Research and Application. Shanxi, China.

19. WSN Research Group. (2014). Sensor Network Hardware Systems. Retrieved 1 22, 2014, from

The Sensor Network Museum: http://www.snm.ethz.ch/

44

Appendix (A)

Guide Name. Author, date, website, etc. Guide Content

WSN Programming Olaf Landsiedel TinyOS component, “Blink”,

other examples.

TinyOS Tutorial Chien-Liang Fok ,Fall 2004 WSN hardware, TinyOS

installation and configuration,

nesC syntax, network

communication, data acquisition,

debugging

WSN Research and Application Wenyong Wang Current WSN research trends and

hot pots, applications

WSN Programming Using

TinyOS

Jin He, Mar 2012 WSN/TinyOS architecture,

installation, example codes

WSN Technology, Protocols and

Applications

Kazen Sohraby,etc., 2007 WSN history/trends, application,

protocols, network management,

OS

WSN Technologies for the

Information Explosion Era

Takahiro Hara, etc., 2010 Scheduling, Data management,

Networked Sensing Sys,

Implementation, development

support

WSN Designs Anna Hac, 2003 Routing in WSN, Smart dust,

Clustering techniques, protocol,

45

applications

WSN: Motes, NesC, and TinyOS Jurgen Schonwalder, April2007 Application, hardware,

constraints/challenges,

nesC/TinyOS, Internet/Protocols

Cygwin User’s Guide http://cygwin.com/cygwin-ug-

net/cygwin-ug-net.html

Setting up, how to use Cygwin,

programming

WSN Sebastian Buttrich, Nov. 2011 History, applications, hardware,

OS, challenges.

Crossbow: MoteWorks Getting

Started Guide

Catherine Greene, etc. Installation of MoteWorks,

TinyOS/nesC, sensing

application and Xmesh

TinyOS Programming Philip Levis, Oct. 2006 Interfaces/Modules,

Configurations/Wiring, design

46

Appendix (B)

Blink.nc

configuration Blink {

}

implementation {

components Main, BlinkM, SingleTimer, LedsC;

Main.StdControl -> SingleTimer.StdControl;

Main.StdControl -> BlinkM.StdControl;

BlinkM.Timer -> SingleTimer.Timer;

BlinkM.Leds -> LedsC;

}

BlinkM.nc

/**

* Implementation for Blink application. Toggle the red LED when a

* Timer fires.

**/

module BlinkM {

provides {

interface StdControl;

}

uses {

interface Timer;

interface Leds;

}

}

47

implementation {

/**

* Initialize the component.

*

* @return Always returns <code>SUCCESS</code>

**/

command result_t StdControl.init() {

call Leds.init();

return SUCCESS;

}

/**

* Start things up. This just sets the rate for the clock component.

*

* @return Always returns <code>SUCCESS</code>

**/

command result_t StdControl.start() {

// Start a repeating timer that fires every 1000ms

return call Timer.start(TIMER_REPEAT, 1000);

}

/**

* Halt execution of the application.

* This just disables the clock component.

*

* @return Always returns <code>SUCCESS</code>

**/

48

command result_t StdControl.stop() {

return call Timer.stop();

}

/**

* Toggle the red LED in response to the <code>Timer.fired</code> event.

*

* @return Always returns <code>SUCCESS</code>

**/

event result_t Timer.fired()

{call Leds.redToggle();

return SUCCESS;

}

}

SingleTimer.nc

Configuration SingleTimer {

provides interface Timer;

provides interface stdControl;

}

implementation {

components TimerC;

Timer = TimerC.Timer [unique(“Timer”)];

stdControl = TimerC;

}

49

Appendix (C)

Wireless Sensor Network Programming Language Application Guide

Chapter I Introduction to Computing Basics

This chapter covers the introduction of computer memory, such as RAM, ROM, EEPROM, flash memory.

It also provides some C programming language basics. This chapter is designed for the students who have

not taken courses about computing or who need to refresh their memory.

Section 1.1 Semiconductor Memories

In computing, the memory capacity is the number of bits that be addressed and the semiconductor

memory chip can store. A group of 8 bits is called byte. For higher storage units, 1 Kilobyte (KB) = 1024

Bytes, 1 Megabyte (MB) = 1024KB, 1 Gigabyte (GB) = 1024MB, etc.

Section 1.1.1 ROM

ROM (Read-only memory) is the memory which does not lose any data when the power is off. The data

stored in ROM is stable but cannot be modified as quickly as the data in RAM (Radom access memory).

ROM has different types such as PROM, EPROM, EEPROM, flash memory, etc.

EPROM (Erasable programmable read-only memory) uses high voltage to write data into memory and

erase data many times. An older, now less common type of EPROM is Ultraviolet ERPOM (UV-

EPROM), which erases content through exposure under ultraviolet rays. However, the process to erase

data in UV-EPROM usually takes up to 20 minutes. EEPROM (Electrically erasable programmable read-

only memory) is a successor technology to EPROM. EEPROM erase times are typically in microseconds

instead of minutes for EPROMs. The XM2110CA multi-chip module (MCM) has a 4K byte EEPROM

(See Chapter 3).

50

Flash memory is also a type of memory that can store data when power is off. The main difference

between EEPROM and flash memory is that flash memory erases data by block and EEPROM erases data

by bytes. The XM2110CA MCM has a 128K bytes program flash memory and a 512K bytes serial flash

memory (See Chapter 3).

Section 1.1.2 RAM

RAM (Random access memory) is the internal memory that exchanges data with CPU. It is usually used

as temporary data storage media for operating systems or other running applications. However, RAM

cannot keep data when power is off, which is different from ROM. (Mazidi & Causey, 2009). The

XM100CA MCM has an 8K bytes RAM (See Chapter 3).

Section 1.2 C Programming Basics

This section briefly explains some basics of C language programming, which shares the same grammar

with nesC language used in programming on WSNs. The concepts discussed this section will be applied

to the example applications in Chapter 5.

In the C programming language, there are four types of data as shown in the table 1.3.1. Data types are

used to determine the storage space of a variable and how a variable is interpreted.

51

Types Explanations Example

Basic Integer type or floating-point type (Applied in Chapter 5) int a, float b

Enumerated Define a data to be a set of predefined constants
enum cardsuit {

 CLUBS = 1,

 DIAMONDS = 2,

 HEARTS = 4,

 SPADES = 8

};

Void No value available void f (void) ;

Derived Pointer, array, structure, union and function types *ptr = 8;

Table 1.3.1 C Programming Language Data Type

In the C programming language, there are six types of operators as shown in the table 1.3.2. Operators are

used to perform mathematical or logical operations. The detailed examples of operations can be found at

http://www.tutorialspoint.com/cprogramming/c_operators.htm (Tutorialspoint, 2014).

52

Types Explanations

Arithmetic +, -, *, /,% Add, subtract, multiply, divide, remainder

++, -- Increase, decrease values by one

Relational ==, != Check if two values are equal or not equal

>, < Check which value is greater or less

>=, <= Check which value is greater or equal, less or equal

Logical && Logical AND operator

|| Logical OR operator

! Logical NOT operator

Bitwise &,|, ^ Binary AND, OR, XOR operators

~ Binary Ones complement operator

<<, >> Binary left, right shift operators

Assignment = Assignment operator

+=, -=, *=, /=, %= Add, subtract, multiply, divide, modulus AND assignment operators

<<=, >>= Left, right shift assignment operators

&=, ^=, |= Bitwise AND, exclusive OR, inclusive OR assignment operators

Misc Sizeof() Return the size of an variable

53

& Returns the address of an variable

* Pointer to a variable

?: If Condition is true? Then value X : Otherwise value Y

Table 1.3.2 C Programming Language Operator Type

In the C programming language, there are three basic types of program design structure as shown in the

Table 1.3.3.

The statement of if…else will be used in Chapter 5. Its syntax is:

if(boolean_expression)

{

 /* statement(s) will execute if the boolean expression is true */

}

else

{

 /* statement(s) will execute if the boolean expression is false */

}

Type Explanations

Sequence structure Program in sequential order

Decision making structure If, if…else, nested if, switch, nested switch

Loop structure While, for, do…while, nested loops

Table 1.3.3 C Program Structure

54

Chapter II Wireless Sensor Network Technology History and Features

Section 2.1 History of Development of WSN Technology

The history of development of WSN technology can be divided into four stages by time (Nack, 2010).

1. Cold - War Era: Sensor: Sensor Networks for military use were applied. For instance, the Sound

Surveillance System (SOSUS) was developed to track Soviet submarines through placing

acoustic sensors underwater at key locations. The air defense radar network was developed to

defense the territorial air space of United States.

2. Early 1980s: Distributed Sensor Network program was started to monitor environmental variables

through a set of sensors in different locations by Defense Advanced Research Project Agency.

DSN development was still limited by the size and cost of sensors at this period.

3. Late 1980s: The contributions and achievements of DARPA drew the attention of US military.

The large replenishment of a fund gave the scientists more opportunities to develop sensor

network technology. That encouraged a great progress of sensor network technology.

4. Present research: Great development of computing, Micro-Electro-Mechanical System and other

technologies led to the sensors in smaller size and cheaper price. WSN technology is applied into

commercial and educational uses. More companies which produce wireless sensors and software

support are built. The standardization of WSN protocols is becoming mature.

Section 2.2 Applications of WSN Technology

WSN technology can be applied into many fields. It has the features of rapid deployment, self-

organization, strong concealment and high fault tolerance. Therefore, it is very suitable for the

applications in the military. Agriculture environment automatic monitoring system can also be built by

using WSN. Use of a shared network allows the data acquisition and environmental control of wind, light,

55

electricity, heat and chemicals, which can effectively improve the degree of intensive agricultural

production, simplify the system complexity and reduce the equipment costs.

In addition, WSN can play an important role in the detection of human physiological data, the elderly

health, hospital drugs’ management and remote medical treatment. Use of appropriate sensors, such as

piezoelectric sensor, acceleration sensor, ultrasonic sensor, humidity sensor, etc. can effectively allow

design of a multi-dimensional protection network. The system can be used for monitoring a bridge,

viaduct, and highway and road environments. With the help of the spacecraft distributed sensor nodes,

achieving wide range and long-term close monitoring and exploration on the surface of a planet is feasible

(Ren & Yang, 2010).

Section 2.3 Research Trends and Issues of WSN Technology

Section 2.3.1 WSN Research Trends

With the researchers’ indefatigable work in different fields over years, WSN technology applications have

found use in the military, fine agriculture, security monitoring, environmental monitoring, construction,

medical care, industrial control, intelligent transportation, logistics management and intelligent household.

The research trends of WSN technology are stated below.

1. Simulation platform: There are many existing WSN simulation platforms. However, they still

have some limitations. Therefore, standard simulation technology and tools is one of the hot

research topics.

2. Development of sensor nodes: Different application fields need to apply different types of sensor

nodes. The research and development of new, low cost and low power consumption sensor nodes

are still an importance in the development of WSN technology.

3. Node localization algorithm and evaluation model: Further localization algorithm research will

mainly focus on how to use the local information provided by a few nodes and other nodes’

56

communication constraints to estimate the unknown nodes, especially mobile nodes, under a low

cost and high precision.

4. Cross-layer design: The goal of cross-layer design is to achieve designed interaction and balanced

performance between non-adjacent protocol layers. That will optimize energy management and

low power consumption design of WSN.

5. Network fusion research: WSN with the functions of data acquisition, preprocessing and

transmission need to be integrated with the existing internet, mobile communication network to

transmit information and innovate applications by using sensing information.

6. Mature industry application: Seamless connection between WSN and existing systems is an

important foundation for sustainable development of WSN technology. It is also the key to the

WSN further industrialization and marketization.

Section 2.3.2 WSN Issues

Wireless Sensor Networks, however, still face some practical problems (Baidu, 2014).

1. The problem of network communication: In the WSN communications, the signal may be

affected by some obstacles or other electronic signal interferences. How to make safe and

effective communications is a problem to be studied in the future.

2. Cost problem: Wireless sensor networks need to use a large number of micro sensors, so cost will

restrict its development.

3. System energy supply problem: The current main solutions are to use high-energy batteries and

reduce power consumption. In addition, there are sensor networks self-energy collection

technology and wireless battery charging technology.

4. Efficient wireless sensor network structure: There are many forms and ways to structure wireless

sensors. A reasonable wireless sensor network can maximize the use of resources. This includes

the problems of network security protocols and large-scale sensor network nodes mobility

management.

57

In short, the wireless sensor network application prospect is very attractive. Wireless sensor network

(WSN) is considered to be one of the important technologies affecting human future life; this emerging

technology provides people with a new access to information and a way of processing information.

58

Chapter III Wireless Sensor Network Hardware Features: Memsic

A wireless sensor network is composed of a large number of low-cost micro sensor nodes deployed in the

monitoring areas. It forms a multiple hop and self-organizing network through the wireless

communication mode. A sensor node (a mote) is the fundamental unit of WSN. It is used to collect

information from sensors, process commands and communicate with other nodes. A mote usually has five

components, including a controller, transceiver, power source, memory and sensors. There are currently

numerous available sensor nodes for educational, research and commercial uses, such as BTnode,

COOKIES, EPIC mote, Telos, etc. This guide focuses on the IRIS mote available in the ECET lab.

Section 3.1 IRIS Mote

The IRIS has a MCM XM2110CA and it consists of several components as shown in the table below.

Integrated Circuit Type Model Number Functions

Microcontroller Unit ATmega1281 A low power microcontroller unit (MCU) designed for

embedded applications

RF Transceiver AT86RF230 A Radio Frequency (RF) module for communication

over the Wireless Personal Area Network (WPAN)

External Serial Flash

Memory (512K)

AT45DB041D Store code images through Over The Air Programming

(OTAP) to serial flash

Table 3.1.1 XM2110CA Integrate Circuits

59

Figure 3.1.1 XM2110CA Module (Crossbow, 2007)

Figure 3.1.2 XM2110CA Block Diagram (Crossbow, 2007)

The IRIS also has a 51-pin expansion connector (shown in figure 3.1.4) which supports interfaces. This

provides the ability to connect the IRIS motes with a large number of external devices. Overall, the IRIS

mote has the following features:

1. It has an optimized processor and an improved radio range (as far as 500 meters) compared with

previous MICA motes.

60

2. Its radio operates on the 2.4GHz globally compatible ISM (Industrial, Scientific and Medical)

band.

3. It is supported by MoteWorks software platform which allows WSN management and

development.

4. It has a variety of software interfaces which support standard or custom sensing devices.

5. It supports Memsic sensor boards, data acquisition boards, gateway, etc.

Figure 3.1.3 An IRIS Mote (Crossbow, 2007)

Figure 3.1.4 A 51-pin Expansion Connnector (Crossbow, 2007)

61

Section 3.1.1 ATmega1281 Microprocessor

3.1.1(a) Memory

The ATmega1281 microprocessor has an 8 bit AVR CPU with a 16MHz maximum operating frequency.

It has several types of memory. The following table shows the usage of different memories. The basic

concepts of memory were introduced in Chapter 1.

Memory Type Capacity Uses

Program Flash Memory 128K Bytes Store application codes through serial ports or Over The Air

Programming (OTAP).

EEPROM 4K Bytes Store persistent values such as mote ID, group ID, radio

channel and other mote configuration data

RAM 8K Bytes Store user application parameters, Xmesh and TinyOS

variables, and the stack

Table 3.1.2 ATmega1281 Memory

3.1.1(b) USARTs

The ATmega1281 has two USARTs (Universal Synchronous/Asynchronous Receiver/Transmitter)

devices. They perform as UARTs (Universal Asynchronous Receiver/Transmitter) in the Memsic MCM.

UART0 is used to communicate with the client device when the IRIS mote functions as a base station. It

is the default I/O serial communication port. UART1 can be used to communicate with another serial

device for users, for example, external serial flash memory.

62

3.1.1(c) ADC

The ATmega1281 has a 10 bit analog to digital converter. It has eight channels and uses the battery

voltage as a full scale reference. For instance, if the battery voltage is 3.2V, the ADC will measure a full

scale voltage; if the battery voltage is 2.5V, the ADC will measure the corresponding full scale voltage.

3.1.1(d) Other Interfaces

The ATmega1281 has additional interfaces. The I²C (Inter-Integrated Circuit) provides a synchronous

interface for lower speed serial devices. The SPI Bus (Serial Peripheral Interface Bus) provides a

synchronous interface, for operating at speeds greater than the I²C standard (Wikipedia, 2014).

Section 3.1.2 External Serial Flash Memory

The Iris mote has a 512K bytes external flash memory which is interfaced to the MCU. It is connected to

one of the USART (Universal Synchronous/Asynchronous Receiver/Transmitter) devices on the

ATmega1281. It is used to store data, measurements and other user-defined information as a pseudo disk

drive because of the memory capacity and other limitations of the internal flash memory. It is also used

for OTAP described below.

The 128K bytes program flash memory is logically divided into two sections (Figure 3.1.5). The

application section is used to store the application codes. The boot loader provides a Read-While-Write

Self-Programming mechanism to download and upload program codes for the application software

updates without the need of a second microcontroller that was found in previous motes. The code in boot

loader section can process read-write operations to the entire flash including the boot loader section. Thus,

the boot loader can modify or erase itself.

The external serial flash memory has 4 logical slots. When programming over the air, an incoming code

image is broken into page fragments by OTAP protocols to reduce the traffic required for the download

63

process. A page is the amount of the image that can be transmitted in a single TOS packet. The selected

mote receives the code page and stores them into the serial flash memory (Memsic, 2010). The boot

loader provides the ability to load programs (a copy of the bootable image in slot 1, 2 or 3) and reprogram

the microprocessor from serial flash memory into the program flash.

The slot to store bootable image can be assigned (shown in Figure 3.1.6) by MoteConfig (a graphical user

interface for mote programming and OTAP). The use of MoteConfig can be referred to “MoteConfig

User’s Manual” by Crossbow. The boot loader codes are loaded when over-the-air-programming the mote

initially. Once the programming is completed, the boot loader can be erased via the UISP command.

Figure 3.1.5 OTAP Image Transfer (Memsic, 2010)

64

Figure 3.1.6 OTAP with the selection of the slot in MoteConfig

Section 3.1.3 RF Transceiver

The Iris mote has a 2.4GHz frequency band, IEEE 802.15.4 compliant RF transceiver. IEEE 802.15.4 is

the standard to specify the physical layer and media access control for low data rate wireless personal area

networks (Wikipedia, 2014). The RF transceiver frequency range is 2405MHz to 2480MHz. The

maximum transmit data rate is 250Kbps with a RF power of 3dBm. The RF transceiver has more than a

50 meters indoor range and more than a 200 meters outdoor range.

The radio messages can be transmitted between the base station and nodes through the Xmesh network.

The Xmesh network also allows different nodes to communicate with each other. The Xmesh supports

OTAP operation. It also provides the network services that enable network self-organizing and self-

65

healing. The Xmesh is a multi-hop, ad-hoc, mesh networking protocol developed for wireless networks

by Memsic and it features as an improved radio coverage and an improved reliability when compared to

other mote network protocols. The Xmesh supports a network that consists of a PC, a base station and

motes. See Figure 3.1.6 below (Memsic, 2010).

Figure 3.1.7 An Xmesh Network Structure (Memsic, 2010)

The PC receives data and sends commands into the Xmesh network. The base station sends messages to

the PC through serial communications and communicates with other nodes over the radio. The nodes

communicate with each other over the radio.

Section 3.1.4 Power Supply

The Iris mote uses two AA batteries with the external power of 2.7V to 3.3V. The power is connect

through the 2-pin Molex connector. Each ATmega1281 operation consumes current. Typical values are

shown in table 3.1.2 (Memsic, 2010). However, the processor and radio can invoke sleep mode and the

current can be reduced to micro-amps instead of milli-amps to extend battery life.

66

Operation Operational currents (mA)

Microprocessor, full operation 6

Microprocessor, sleep 0.010

Radio, receive 16

Radio, transmit 17

Radio, sleep 0.001

Serial flash memory, write 15

Serial flash memory, read 4

Serial flash memory, sleep 0.002

Table 3.1.3 IRIS Mote Operational Currents

Section 3.2 MIB520 USB Interface Board

MIB520 USB interface board has a baud rate of 57.6k. It has a 51-pin connector, red, green and yellow

indicators. In the MIB520, the USB interface board is mated to an IRIS mote using the 51 pin connector.

The pair of boards comprises a mote network “base station” (Memsic, 2014). When the base station

connects to the PC computer, it has two virtual ports: com(x) and com(x+1) that use the single physical

USB connection. The low virtual port number provides the programming channel from the PC to the

MIB520. The high virtual port number provides the data communication channel from the MIB520 to the

PC.

67

.

Figure 3.2.1 MIB 520CB USB Interface Board (Crossbow, 2007)

Figure 3.2.2 An IRIS Mote Functions as a Base Station

Section 3.3 MTS400CC Sensor Board

Memsic provides a variety of sensor and data acquisition boards for the IRIS mote. These boards are each

compatible to the 51-pin connector and therefore can directly connect to the IRIS board. The MTS 400CC

68

sensor boards have the ability to monitor environmental conditions through the sensors shown in table

3.3.1.

Sensor Type Specifications

Ambient light sensor Range: 400-1000nm

Temperature sensor Range: -40 to +80 Celsius, temperature accuracy: 2 Celsius

Relative Humidity sensor Range: 0-100%RH, accuracy: 3.5%RH

Barometric pressure sensor Range: 300-1000 mbar, accuracy: 1.5% @25 Celsius

Dual-axis accelerometer Range: -2g to +2g

Table 3.3.1 MTS400CC sensors specifications

Figure 3.3.1 MTS400CC Sensor Board (Crossbow, 2007)

69

Figure 3.3.2 A Wireless Node

Detail specifications of IRIS mote, MTS400/420 sensor boards and MIB520 USB interface boards are

provided in the appendix.

70

Chapter IV Wireless Sensor Network Software Features: TinyOS & Moteworks

Section 4.1 Introduction to TinyOS

The operating system of a wireless sensor network manages WSN hardware resources by providing a

collection of software applications. Chiefly, this involves creating and managing network traffic, and data

acquisition. The operating system of WSN is not as complex as Windows, Android, Mac OS and other

general operating systems because of the typical requirements and constraints of WSN hardware. There

are many WSN OSs including Contiki, LiteOS, and Nano-RK. TinyOS is one of the WSN OSs and was

developed by UC Berkeley and initially released in 2000. It is an open-source operating system, which

can communicate and take commands from a Linux-based device. It also supports Windows 2000/XP

through the software application Cygwin. TinyOS provides a set of services such as power management,

security, messaging, etc. It also supports a variety of hardware devices including the IRIS mote.

TinyOS has a component-based architecture, which allows for rapid innovation and code size

minimization, both of which are helpful when working with small computing devices that must service a

variety of sensor applications. The TinyOS architecture can be divided into four parts; these are network

protocols, distributed services, sensor drivers and data acquisition tools. Its libraries and applications are

written in nesC (Network Embedded System C), which is one type of component-based, event-driven

programming languages (See Chapter 5).

Figure 4.4.1 shows TinyOS components communicate through commands and events. There are three

types of components in TinyOS, including high level components, synthetic hardware and hardware

components. The high level components are used to control other components, routing, data calculation

and aggregation. Synthetic hardware components are used to simulate advanced hardware. Hardware

components are used to provide commands and events to control the specific hardware. The scheduler

controls the tasks posted by commands and events (Lang, 2006). The concepts of commands and events

will be further discussed in Chapter 5. Figure 4.4.2 shows the link between TinyOS and Mote Hardware.

71

Figure 4.1.1 TinyOS Structure (Lang, 2006)

Figure 4.1.2 TinyOS Structure (Chen, 2008)

72

Section 4.2 Introduction to MoteWorks

MoteWorks is the first industry-used, open source and standards based software platform which supports

OEM equipment and system development. It is based on TinyOS and provides the Xmesh networking,

OTAP operations, server middleware and client monitoring and managing user interfaces. This software

platform supports a variety of wireless sensors. Its powerful flexibility helps developers to choose the best

network topology, power management mode and bandwidth of applications, especially for low power

operation network. In addition, MoteWorks advanced hardware design makes it possible for users to

develop hardware.

In MoteWorks, there are three tiers including the Mote Tier, Server Tier and Client Tier. MoteWorks

optimized for the low-power network provides the full end-to-end support for each layer application of

sensor networks (IMALEX, 2014).

1. The Mote Tier is composed of nodes running in the Xmesh network (See Chapter 3).

2. In the Server Tier, Xserve play as the bridge between sensor networks and traditional Internet. It

also links the communications between sensor networks and enterprise applications. Xserve

supports the files, databases, XML (Extensible Markup Language) data parsing and forwarding.

The data communication with sensor networks can be completed through databases, custom ports

and XML.

3. In the Client Tier, the users can utilize visual software and graphical nodes to manage and

monitor the network, sending commands and set alarms. MoteView is one of the client software

provided by Crossbow.

The Crossbow’s MoteWorks CD-ROM provides the installation of the MoteWorks software platform. It

is compatible with Windows XP. The CD-ROM offers software packages shown in the table below.

Further installations and instructions can be found in the “MoteWorks Getting Started Guide” (Crossbow,

73

2014) and “Developing and Designing Undergraduate Laboratory Wireless Sensor Network Exercises”

(Aridi, 2012).

MoteWorks Software Package Introduction

Programmer’s Notepad Integrated development environment to compile nesC codes and debug

(introduced in Chapter 5)

Cygwin Linux-like environment which supports TinyOS compatible in

Windows 2000/XP

AVR Tools Collection for AVR microcontrollers application development

MoteConfig Graphical user interface for mote programming and OTAP

MoteView Graphical user interface for sensor data logging and display

XSniffer Networking monitoring tool

Graphviz Tool to view nesC program diagrams

PuTTY Terminal emulator, serial console and network file transfer

TortoiseCVS Client server software revision control system

Table 4.2.1 MoteWorks Software Package

74

Chapter V NesC Language Programming

Section 5.1 Introduction

NesC is an extension of C programming language and mainly used for sensor network programming

development. TinyOS is written in nesC and designed for the use of embedded wireless sensor network

by UC Berkeley. A nesC program is composed of “components”. All the components are wired together

to form the entire program. There are two types of components: one is “module” and the other one is

“configuration”. A module provides the programming codes and realizes interfaces. A configuration links

different module and configuration components together and connects interfaces used by component. The

syntax of the configuration component is unusual and unlike program codes found in C language

programming.

The settings of interfaces explain the component’s functions. Interfaces can be set as “provided” or set as

“used” by components. The “provided” interfaces provide components’ functions to users; the “used”

interfaces provide components with needed functions. Interfaces are bidirectional. They describe a set of

functions provided by the interface’s provider (commands) and another set of functions achieved by the

interface’s user (events). For instance, an interface can force a component to “send data” by command

and force “send data done” by event. That is because the commands in TinyOS are non-blocking and the

events send signal to complete the commands (Mitra, Chakraborty, Mondal, & Naskar, 2014).

The rest of this chapter will discuss the nesC programming rules with examples, such as nesC scope,

name spaces, definitions of interfaces and components, and how to implement module and configuration.

It will also cover the nesC applications coding, compiling and execution with notes

75

Section 5.2 Interface Definition and Specifications

The interface is used to describe the bi-directional interaction between two different components through

the functions of commands and events. The interface provider implements commands to the interface user.

The interface user implements events to the interface provider.

The interface definition follows the syntax below:

interface identifier type-parametersopt {declaration-list}

Therefore, the interface definition has an identifier (a unique name), optional type parameters (the same

parameter types as C) and a declaration list for the functions of commands and events. A type parameter

is the generic labels to refer unknown data type, data structure or class. A declaration list of the interface

definition is used to explain TinyOS commands and events.

If the interface definition has type parameters, the interface will be a generic type. There are different

types of interfaces according to different types of type parameters. The type parameters cannot be

incomplete, function or array type. The components can only be connected using interfaces of the same

type.

Example interface definitions provided in “NesC 1.3 Language Reference Manual” are explained (nesC

1.3 Language Reference Manual, 2014):

76

interface SendMsg {

command result_t send(uint16_t address, uint8_t length, TOS_MsgPtr msg);

event result_t sendDone(TOS_MsgPtr msg, result_t success);

}

interface Init<t> {

command void doit(t x); //Define a command with a void function named as doit

}

module Simple {

provides interface Init<int> as MyInit;

uses interface SendMsg as MyMessage;

} ...

There are two interface definitions in this code segment.

The first non-generic interface SendMsg has two functions, one is the command to send the message and

the other one is the event to signal the message sending done.

The second interface definition Init<t> is a generic interface definition.

In last section of the code, the module Simple, the “provides” interface which is an Init<int> type and

named as MyInit; the “uses” interface which is a SendMsg type and named as MyMessage implements

the call to send the message and the event to signal the message sending done.

77

If the name MyMessage of the interface is not stated, the program will be “uses interface SendMsg”. “Use

interface SendMsg” is interpreted as “use interface SendMsg as SendMsg”. Therefore, the interface name

will be the same as the name of the interface definition specified by the interface type.

provides interface Init<int> as MyInit;

uses interface SendMsg as MyMessage;

MyInt and MyMessage are interface names. Int<int> and SendMsg are the names of the interface

definitions specified by the interface types.

Hardware Event Handler

By adding the keyword async, the command or the event can be performed as a hardware event handler

not a task. The task and hardware event handler are two types of threads of execution when running a

nesC application. The task will run to completion once it is scheduled. The hardware event handler can

preempt the executions of other tasks and hardware event handlers, and run to completion. (See section

5.4).

Section 5.3 Component Definition, Specifications, and Implementation

A nesC program is built by components. The components provide and use interfaces. A nesC component

definition follows the syntax below:

component-kind identifier component-parametersopt component-specification implementationopt

78

There are five specific component kinds as shown below in table 5.3.1:

Module Configuration Binary component Generic module Generic configuration

 Table 5.3.1

There are two kinds of the component implementations: Module implementation and Configuration

implementation.

The component name must be different from other components and interfaces. Similar to the interface

definition, a component definition with parameters is called a generic component. The difference between

a generic component and a component without parameters is that a generic component must be

instantiated in the configuration before used. The binary component is a component in a binary form,

which has no implementations.

The component specification provides and uses the interfaces (Section 5.2). The component can also

contain bare commands and events, typedefs and tagged type declarations.

Module Implementation

The module implements components specifications with the following syntax:

implementation {translation-unit}

The translation unit contains the codes to implement all the provided commands and events of the module.

The commands and events can be non-parameterized or parameterized. The keyword to execute the

commands is “call” and the keyword to execute the events is “signal”.

79

The keyword atomic is used to conditionally prevent simultaneous computations. The following example

shows how atomic avoids do_something to execute concurrently (nesC 1.3 Language Reference Manual,

2014):

bool busy

void f() {

bool available;

atomic {

available = !busy;

busy = TRUE;

}

if (available) do_something;

atomic busy = FALSE;

}

Configuration Implementation

The configuration is to define the connection between components. The configuration is implemented by

the following syntax:

implementation {configuration-element-listopt}

The configuration elements include components, connection and declaration.

80

The configuration is built by components. Components can be non-generic components, or instantiations

of generic components in the configurations. For instance, in the following configuration AWiring:

configuration AWiring { }

implementation {

components J, new Grade (2, int);

components new Grade (4, float) as SecondGrade;

}

There are one non-generic component J, and two instantiations of generic components that are Grade and

SecondGrade.

The wiring statement is defined by the connection (nesC 1.3 Language Reference Manual, 2014):

1. endpoint = endpoint : if any specification elements from any endpoints are external, that makes

both sides of the endpoints equivalent.

2. endpoint -> endpoint : this means this connection is from a used specification element specified

by the left side endpoint to a provided specification element specified by the right side endpoint.

3. endpoint <- endpoint : this means this connection is from a used specification element specified

by the right side endpoint to a provided specification element specified by the left side endpoint.

81

The codes below (Crossbow, 2007) follow the wiring statements:

Example 1:

Example 2:

Example 3:

configuration SingleTimer {

 provides interface Timer;

 provides interface StdControl;

}

implementation {

 components TimerC;

 Timer = TimerC.Timer[unique("Timer")];

 StdControl = TimerC;

}

 Main.StdControl -> SingleTimer.StdControl;

SingleTimer.StdControl <- Main.StdControl;

82

Figure 5.3.1 Example 1

Figure 5.3.2 Examples 2&3

The first example uses wiring statement 1 (endpoint = endpoint) to implement the calling between Timer

and multiple other external components. Interface TimerC is the interface provided by Crossbow CD

ROM. StdControl is a system interface. (Discussed in “A Deeper Look at Blink Application” part of

section 5.7.)

The second example wires “uses” interface StdControl in Main component and “provides” interface

StdControl in SingleTimer component. (Main component will be introduced in detail in section 5.7).

The third example accomplishes the same goal, but uses a different syntax.

Synax

The specification elements from both endpoint sides must be the same as commands, events or interfaces.

The commands or events must have the same function signature. The interfaces must have the same type.

Section 5.4 NesC Concurrency Model

NesC concurrency model has two threads of execution. Tasks are the functions in the run to completion

mode; once tasks are scheduled, they are not preempted or preempt others. Preemption is defined to

83

interrupt a task temporally with the intention to resume the task later. The tasks can be executed in any

order, but still need to follow the run to completion rule. Task can perform longer processing operations

like background data processing. One task can be executed till the previous task is completed or be

preempted by hardware event handlers. Hardware event handlers perform a small amount of work. They

are also running to completion in response to the hardware interrupt. However, hardware event handlers

can preempt other tasks and hardware event handlers.

Section 5.5 Summary of NesC Programming Rules

NesC is an extension of C programming language. It was developed as a result of working on the

embedded sensor networks. The grammar of nesC has no differences with the standard C. A nesC

application is built by components. One component is an “nc.” file extension. An application typically

has a component “Main” (Similar to the main function of C). “Main” invokes other components to

achieve application functions. “Main” invokes other components and one component invokes other

components through interfaces. Interfaces can be understood as an encapsulation of function declarations.

The content of the interface is a set of function declarations, but without function definitions. Therefore,

the interface can be understood as the attribute of the component, the functions can be understood as the

attribute of the interface.

Components are divided by two types, module and configuration. The configuration is used to link

components and the module is used to achieve how components work. NesC defines two special

functions, command and event. In a component, the command is implemented by “call” in a provided

interface; the event is implemented by “signal” in a used interface. The keyword “async” declares the

command or event can be executed as a part of a hardware event handler to be preempted. Hence “async”

can make a command or event executed at any time by preempting other commands or events. Therefore,

commands or events declared as “async” can complete small workload quickly. Tasks are used to perform

large workload operations. One task can be postponed by using keyword “post”, which places the task to

84

a FIFO order queue. For the coordination of tasks and hardware event handlers, the keyword “atomic”

indicates a segment of codes that cannot be interrupted. There is no priority between tasks. However,

tasks can be interrupted by hardware event handlers (TinyOS Tutorial, 2003).

Section 5.6 Coding Examples and Explanations

The nesC application is composed of five parts, which are Makefile, Makefile.component, module,

configuration and README. Makefile is used to define how to compile and connect source files to

generate an executable file, and define the dependencies between files. Makefiles are commonly used by

programmers. Makefile.component is used to describe the names of top level application component the

sensor board.

The module and configuration function are used to implement and link components. README provides

some introductions of the application.

Codes Compiling and Installation

There are two methods to compile and install the codes, one is through Programmers Notepad and the

other one is to use Cygwin. To use Programmers Notepad, the program can be compiled through selecting

tools and then make IRIS, and be installed through selecting shell and type command “make IRIS

reinstall mib520, com(x)”. To use Cygwin, the user must find the directory which the application locates,

and then type command “make IRIS” to compile the program and type command “make IRIS reinstall

mib520, com(x)” to install the program. The sensor data can be viewed by typing command “Xserve –

device=com(x+1)”. The message “writing TOS image” in both methods indicates that the compiling is

successful. TOS represents TinyOS. After compiling successfully, a file called “build” will be generated

which includes the main,exe application of blink under the directory of blink file.

85

Figure 5.6.1 Compiling in Programmers Notepad

Figure 5.6.2 Compiling in Cygwin

Figure 5.6.3 Installing in Cygwin

86

Figure 5.6.4 Sensor Data reported in Cygwin

The structure chart can be constructed to help understand an application visually (Applied in the

following examples).

A Deeper Look at Blink Application

The basic application Blink is included on the CD-ROM installation and used to toggle the LED on the

IRIS mote. Blink.nc (853 Bytes) implements the wiring between components. The relationship between

four different application components is defined in Figure 5.6.5. BlinkM.nc (1.46 KB) implements the

application function. SingleTimer.nc (826 Bytes) provides a single timer. LedsC.nc (3.23 KB) is a library

module component that provides LEDs.

87

Figure 5.6.5 Blink Structure Chart

As shown in Figure 5.6.5, Main is the first component executed in the application, TinyOS has a “smart”

Main component to control the operations of external and internal components directly or indirectly. Main

component is used to initialize, start and stop other program components through StdControl interface. In

the Blink application, the configuration file (Blink.nc) declares that Main component wires SingleTimer

and BlinkM components for control purposes through StdControl directly. It also declares two separate

wire connections: BlinkM and SingleTimer, BlinkM and LedsC from the module file (BlinkM.nc).

Figure 5.6.6 Main component operation

88

Blink.nc

configuration Blink {

}

implementation {

 components Main, BlinkM, SingleTimer, LedsC;

 Main.StdControl -> SingleTimer.StdControl; //Wire StdControl in Main and StdControl in SingleTimer

 Main.StdControl -> BlinkM.StdControl;

 BlinkM.Timer -> SingleTimer.Timer; //BlinkM.Timer uses Timer provided by SingleTimer

 BlinkM.Leds -> LedsC.Leds;

}

The keyword "configuration" declares this is a configuration file. "Configuration Blink {}" declares the

name of this configuration is Blink as the same as Module's name. The real content in the configuration is

implemented in the brace after the keyword "implementation". Main, BlinkM, SingleTimer and LedsC are

the components which this configuration uses after the keyword “component”. The rest part of the

implementation is to wire the interfaces that these components use and the components that provide these

interfaces.

BlinkM is the module component to implement application function. The interfaces Timer is implemented

by component SingleTimer. The interface Leds provided with the Crossbow CD-ROM installation is

implemented by component LedsC.

89

StdControl.nc

interface StdControl

{

 command result_t init(); //Initialize the component and return if the operation is successful.

 command result_t start(); //Start the component and return if the operation is successful.

 command result_t stop(); //Stop the component and return if the operation is successful.

}

The interface StdControl is a public interface used to initial and launch other TinyOS components. For

instance, Main.StdControl -> SingleTimer.StdControl means that SingleTime.StdControl.int() is called by

Main.StdControl.init(). It shows the interface StdControl define three commands: init(), start() and stop().

Init() can be called many times. However, it cannot be called once start() or stop() are called. Result_t is

a data type for the status value returned by a command or event and it can either succeed or fail.

90

BlinkM.nc

module BlinkM {

 provides {

 interface StdControl;

 }

 uses { //uses the interfaces provided by library modules

 interface Timer;

 interface Leds;

 }

}

implementation {

 command result_t StdControl.init() { //Initialize the component.

 call Leds.init();

 return SUCCESS;

 }

 command result_t StdControl.start() { //Start the component.

 return call Timer.start(TIMER_REPEAT, 1000); // Set the repeat time as 1000ms.

91

BlinkM.nc, continued

 }

 command result_t StdControl.stop() { //Stop the component.

 return call Timer.stop();

 }

 event result_t Timer.fired() //Turn the red LED on when the timer fires defined by the interface timer.

 {

 call Leds.redToggle();

 return SUCCESS;

 }

}

BlinkM module provides the interface StdControl and that means it must implement this interface

including the command StdControl.init(), StdControl.start() and StdControl.stop(). It also implements

Timer.fired() event in the interface Timer.

Init() is implemented to initialize the Leds by calling Leds.init(). Start() is implemented to create the timer

by call Timer.start(). Stop() is implemented by calling Leds.redToggle() when Timer.fired() is triggered.

92

SingleTimer.nc

configuration SingleTimer {

 provides interface Timer;

 provides interface StdControl;

}

implementation {

 components TimerC;

 Timer = TimerC.Timer[unique("Timer")];

 StdControl = TimerC;

}

Configuration SingleTimer implements its calling through the provided interfaces of TimerC and

StdControl. Since multiple timers are allowed in nesC, the Unique("astring") is used to make this timer

unique from others in use. The string generates an 8-bit identifier as an argument. Multiple components

which use timer [unique(“Timer”)] are each guaranteed to get a signal associated with their specific timer

settings. In this program, “Timer” is used as the “astring”.

93

Example Application 1

This application is used to obtain the value of light intensity from the sensor board and display the lowest

3 bits to the three LEDs. Sense.nc (323 Bytes), the configuration file, defines the wire connections

between components. The relationship between five different application components is defined in Figure

5.7.6. SenseM.nc (1.80 KB) implements the application function. TimerC.nc (1.02 KB) and LedsC.nc

(3.23 KB) are library modules. Photo.nc (1.08 KB) and PhotoM.nc (6.02 KB) are used to activate the

light sensor.

Interface Timer.nc (1.80 KB), interface ADC.nc (1.40 KB) and interface Leds.nc (2.29 KB) are modified

from the system interfaces.

Figure 5.6.7 Example Application 1 Structure Chart

94

Sense.nc

configuration Sense {

}

implementation

{

 components Main, SenseM, LedsC, TimerC, Photo;

 Main.StdControl -> SenseM;

 Main.StdControl -> TimerC;

 SenseM.ADC -> Photo; //Same as SenseM.ADC -> Photo.ADC

 SenseM.ADCControl -> Photo; //Same as SenseM.ADCControl -> Photo.StdControl

 SenseM.Leds -> LedsC;

 SenseM.Timer -> TimerC.Timer[unique("Timer")]; //Parameterized interface

}

Parameterized interface allows the component provides multiple instantiations of an interface by giving

parameters. It is similar to give different names to the interface instantiations. For instance, in TimerC:

provides interface Timer[uint8_t id]; // uint16_t is unsigned 16-bit integer from 0 to 255

It provides 256 instantiations of the Timer. Each instantiation is corresponding to each value of uint8_t.

95

Since this application needs to create and use different timers that can be managed independently.

The component Photo just provides two interfaces ADC and StdControl without interface ADCControl.

In fact, ADCControl is a new name of the instantiation of interface StdControl.

SenseM.nc

module SenseM {

 provides {

 interface StdControl; //Define interface StdControl

 }

 uses {

 interface Timer;

 interface ADC;

 interface StdControl as ADCControl; //Use multiple instantiations of an interface by giving names.

 interface Leds;

 }

}

implementation {

 result_t display(uint16_t value) // uint16_t is unsigned 16-bit integer from 0 to +65535

96

SenseM.nc, continued

 {

if (value &1) call Leds.yellowOn();

/**Assume value is 13 in decimal and 1101 in binary, 1101&0001 is 0001. **/

 else call Leds.yellowOff(); //Define yellow LED as the least significant bit.

if (value &2) call Leds.greenOn();

/**Assume value is 13 in decimal and 1101 in binary, 1101&0010 is 0010.* */

 else call Leds.greenOff(); //Define green LED as the second bit.

if (value &4) call Leds.redOn();

/**Assume value is 13 in decimal and 1101 in binary, 1101&0100 is 0100. **/

 else call Leds.redOff(); //Define red LED as the most significant bit.

 return SUCCESS;

 }

 command result_t StdControl.init() { //Initialize ADCControl, Leds.

 return rcombine(call ADCControl.init(), call Leds.init()); //Return value is logic value “and” of 2

 commands result using function rcombine

}

97

SenseM.nc, continued

 command result_t StdControl.start() { //Start Timer and 0.5 second clock.

 return call Timer.start(TIMER_REPEAT, 500);

}

 command result_t StdControl.stop() { //Stop Timer.

 return call Timer.stop();

}

 event result_t Timer.fired() { //Read sensor data when Timer fires.

 return call ADC.getData(); //Return result from calling ADC.getData().

}

 async event result_t ADC.dataReady(uint16_t data) { //Display upper 3 bits sensor readings to LEDs.

display(7-((data>>7) &0x7));

/**ADC converts the sensor readings to 10 bits value. The expected activity of photo sensor is to turn

off LED when a node is in the lightness and turn on LED when in the darkness. Therefore the upper 3 bits

of the 10 bit value should be complemented. **/

 return SUCCESS;

}

98

SenseM provides and uses the interface StdControl, Timer and Leds. In addition, it uses another interface,

ADC (Analog to Digital Converter). This module also uses the component TimerC to allow using

multiple timers.

Example Application 2

This application included in Crossbow CD-ROM is used to sample the light intensity from the sensor

board every one second and send the data back to the base station. The yellow LED on means the data has

been sampled and the green LED on means the data has been sent to the base station. MyApp.nc (848

Bytes) implements the wiring between components. The relationship between six different application

components is defined in Figure 5.7.7. MyAppM.nc (3.22 KB) implements the application function.

Photo.nc (1.08 KB) and PhotoM.nc (6.02 KB) are used to activate the light sensor. TimerC.nc (1.02 KB)

and LedsC.nc (3.23 KB) are library modules. The library module GenericComm.nc (1.93 KB) causes the

radio transmission.

Figure 5.6.8 Example Application 2 Structure Chart

99

MyApp.nc

configuration MyApp {

}

implementation {

 components Main, MyAppM, TimerC, LedsC, Photo, GenericComm as Comm;

 Main.StdControl -> MyAppM.StdControl;

 Main.StdControl -> Comm.Control;

 MyAppM.Timer -> TimerC.Timer[unique("Timer")];

 MyAppM.Leds -> LedsC.Leds;

 MyAppM.PhotoControl -> Photo.PhotoStdControl;

 MyAppM.Light -> Photo.ExternalPhotoADC;

 MyAppM.SendMsg -> Comm.SendMsg[AM_XSXMSG];

/**AM_XSXMSG is the type of message. Wire Xsensor channel of GenericComm into application’s

send interface. **/

}

100

MyAppM.nc

module MyAppM {

 provides {

 interface StdControl;

 }

 uses {

 interface Timer; //Define interface Timer named as Timer

 interface Leds;

 interface StdControl as PhotoControl; //Define interface StdControl named as PhotoControl

 interface ADC as Light;

 interface SendMsg;

 }

}

implementation {

 bool sending_packet = FALSE;

 TOS_Msg msg_buffer; //Define message packet

 XDataMsg *pack;

101

MyAppM.nc, continued

 command result_t StdControl.init() { //Initialize the component

 call Leds.init();

 call PhotoControl.init();

 atomic { //Initialize the message packet with default values

 pack = (XDataMsg *)&(msg_buffer.data);

 pack->xSensorHeader.board_id = SENSOR_BOARD_ID;

 pack->xSensorHeader.packet_id = 2;

 pack->xSensorHeader.node_id = TOS_LOCAL_ADDRESS;

 pack->xSensorHeader.rsvd = 0;

 }

 return SUCCESS; //Return the code Success always

 }

 command result_t StdControl.start() { //Start the component

 return call Timer.start(TIMER_REPEAT, 1000); //Set 1 second as repeating time

 }

 command result_t StdControl.stop() { //Stop the component

102

MyAppM.nc, continued

 return call Timer.stop(); // Call the timer to stop

 }

 event result_t Timer.fired() //The Timer fires

 {

 call Leds.redToggle(); // Call the red LED on

 call PhotoControl.start(); //Light sensor control starts

 call Light.getData(); //Start to sample the data

 return SUCCESS;

 }

 void task SendData() //Task to build message packet and send data

 {

 call PhotoControl.stop(); //Stop the light sensor control

 if (sending_packet) return; //The if statement is to decide if sending to serial port is successful.

 atomic sending_packet = TRUE;

 if (call SendMsg.send(TOS_UART_ADDR,sizeof(XDataMsg),&msg_buffer) != SUCCESS)

103

MyAppM.nc, continued

 //Changing TOS_UART_ADDR to TOS_BCAST_ADDR will send the message through

 radio.

 sending_packet = FALSE;

 return;

 }

 async event result_t Light.dataReady(uint16_t data) { //Get the data ready

 atomic pack->xData.datap1.light = data; // Store the light sensor data in the message packet

 atomic pack->xData.datap1.vref = 417; //A dummy 3V reference voltage, 1252352/3000 = 417

 post SendData(); //Post the SendData task to send a message containing sensor data

 call Leds.yellowToggle(); //Toggle yellow LED to indicate sampling successful.

 return SUCCESS;

 }

 event result_t SendMsg.sendDone(TOS_MsgPtr msg, result_t success) { //Send data to serial port

 call Leds.greenToggle(); //Toggle green LED to indicate sending successful.

 atomic sending_packet = FALSE;

 return SUCCESS; }}

104

The interface ADC for light sensors calls the command getData to sample the value of light intensity and

signal event dataReady to complete sampling to get data ready. The type of the value of light intensity is

uint16_t (16 bits).

Section 5.7 Summary of NesC Programming Features

Through the detailed analysis of the programs above, structured programming concepts can be

implemented using nesC language. NesC applications can call interfaces to reduce coding workload,

establish the links between components quickly, and reduce unnecessary resource consumption when

executing tasks and events. Mastering the grammar of nesC can greatly reduce the complexity to achieve

the wireless sensor network operating system and applications. It provides a method of reference to

deeply study and research TinyOS and design applications in TinyOS. C language is effective and

compatible with a large number of microcontrollers. It has a strong readability and mastered by most

programmers. Since nesC is an extension of C language, that helps the popularization of nesC. NesC

applications have no dynamic memory allocation, which simplifies coding and debugging.

105

Chapter VI Sensor Data Display in LabVIEW

Section 6.1 Introduction to LabVIEW and Crossbow XMesh WSN drivers

LabVIEW is a program development environment developed by National Instrument (NI). LabVIEW has

a complete and extensive function library, which includes data acquisition, serial port control, data

display and storage, data analysis and forth. LabVIEW provides components like the traditional

instruments such as oscilloscopes, multimeters. These components can be used to build user interfaces

easily. The user interface in LabVIEW is called front panel.

The significant difference between LabVIEW and other computer languages is that LabVIEW uses G

language to write programs, a graphical editing language. LabVIEW programs are in the form of block

diagrams. Traditional text programming language executes applications according to the order of

statements and commands. However, LabVIEW uses data flow programming. The data flow between

nodes in the block diagram determines the execution order of Virtual Instruments (VIs) and Functions. It

is an organized data acquisition system based on the demands of the instrument (Baidu, 2014).

LabVIEW software is the core of the NI design platform and used to development measurement and

control systems. LabVIEW development environment is integrated with all the necessary tools to quickly

build a variety of applications. It is designed to help engineers and scientists to solve problems, improve

productivity and innovate.

Crossbow XMesh WSN Instrument Driver is one of the third party drivers provided by NI. In addition to

the driver, examples are provided including acquiring, displaying data and sub-VIs such as start stream,

write, add node to build new programs (National Instruments, 2007). The NI VISA (Virtual Instrument

Software Architecture) driver and FTDI (Future Technology Devices International) driver must be

installed allow the use of WSN base station com ports.

106

Figure 6.1.1 Crossbow XMesh WSN Instrument Driver Directory

Section 6.2 A deep look into Front Panel and Block Diagram

The VI used to observe sensor status is revised from the example Read Data and Display Health and

LabVIEW-Basic Scenario (Aridi, 2012) (Border, 2012). The original VI is applied to MTS300 sensor by

default. There is a pull-down list for users to choose appropriate sensors but the original VI has to be

revised for different sensors. Since the MTS400 sensor is set to observe ten values in the default program,

the data display window in the front panel of the provided VI should be modified to read and display all

ten values. The data output window is found in the WSN Read.vi. The revised front panel and block

107

diagram are shown in figure 6.2.1 and 6.2.2. Node IDs field reports the detected nodes. Gateway VISA

Resource is used to configure the appropriate port number (com x+1) connected to the MIB520 base

station by a pull-down list. The components used to process data stream are provided by the Crossbow

XMesh WSN Instrument Driver. The other two available sensor monitoring programs are shown in figure

6.2.3 and 6.2.4 (NI Discussion Forums, 2014).

 +

Figure 6.2.1 Revised Front Panel of Read Data and Display Health

108

Figure 6.2.2 Revised Block Diagram of Read Data and Display Health

The data flow diagram can be explained step by step:

1. Create stream: allocate resources to connect LabVIEW to base station.

2. Start stream: start listening and retaining packets.

3. Timer to wait for packets. It takes time to receive packets.

4. Get node list: read nodes IDs that packets have been received.

5. Read health: display node IDs and read the sensor data received.

6. WSN read: display the most recent sensor data from each node.

7. Stop stream: close the connection to base station and stop receiving packets.

8. Clear stream: clear the packets received and destroy resources allocated.

9. Error handler: indicate errors with a dialog box.

Figure 6.2.3 MTS400 sensor Monitoring Program (NI Discussion Forums, 2014)

109

Figure 6.2.4 MTS400 Sensor Monitoring Program (NI Discussion Forums, 2014)

110

Definitions of Terms

Typedef is a keyword to define a complex type by using basic types. For instance, the codes “typedef int

mile_per_hour” mean that mile_per_hour will be a new variable treated as int in programming.

Enum is a keyword to define a variable that can be one of the preset constants. E.g.: enum month {JAN,

FEB, MAR, APR, MAY, JUN}

Storage class specifiers define the scope and lifetime of the object and function in a program..

Function signature provides the name, parameters and other information of a function.

Debug is a process to find bugs, defects and errors in the program.

uint8_t: stores an unsigned 8 bit number and the range is 0 to +255. Int8_t is from -128 to +127.

Uint16_t is from 0 to +65535.

Specifications specify the interaction between components.

111

References

1. TinyOS Tutorial. (2003). Retrieved 2014, from http://www.tinyos.net/tinyos-1.x/doc/tutorial/

2. National Instruments. (2007). Retrieved 2014, from Crossbow XMesh WSN Sensor:

http://sine.ni.com/apps/utf8/niid_web_display.download_page?p_id_guid=1FB66B354ED149C7

E0440003BA230ECF

3. Baidu. (2014). Retrieved 2014, from

http://baike.baidu.com/subview/140209/5119782.htm?fr=aladdin#10

4. Baidu. (2014). Retrieved 2014, from http://baike.baidu.com/view/230451.htm

5. Memsic. (2014). Retrieved 2014, from http://www.memsic.com/wireless-sensor-networks/

6. nesC 1.3 Language Reference Manual. (2014). Retrieved 2014, from

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved

=0CDYQFjAC&url=http%3A%2F%2Fwww.tinyos.net%2Fdist-2.0.0%2Ftinyos-

2.0.0beta1%2Fdoc%2Fnesc%2Fref.pdf&ei=EyXLU-

rfEdGNyASWxILoBw&usg=AFQjCNEIvL41UX0Joag146qbLHewLCgAOg&sig2=QxJR

7. NI Discussion Forums. (2014). Retrieved 2014, from

http://forums.ni.com/t5/LabVIEW/Labview-Drivers-for-Wireless-Sensor-Networks/td-p/430497

8. Wikipedia. (2014). Retrieved 2014, from http://en.wikipedia.org/wiki/IEEE_802.15.4

9. Aridi, E. O. (2010). Developing and Designing Undergraduate Laboratory Wireless Sensor

Network Exercises. Bowling Green, Ohio: Bowling Green State University.

10. Border, D. (2012). Developing and Designing Undergraduate Laboratory. Proceedings of

American Society for Engineering Education Annual Conference.

11. Chen, S. (2008). A Glance to Tiny OS. OU-TCOM.

12. Crossbow. (2007). M2110 Hardware Reference Manual. Retrieved 2014, from

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved

=0CB8QFjAA&url=http%3A%2F%2Fwww.devisersoftware.com%2Fuploads%2Fflink%2F2014

320132650447.pdf&ei=n3rcU7HDCoqmyATbl4DACg&usg=AFQjCNEtbO2pZoZtyHFU6O5FV

U-UsbK4UA&sig2=6ndzKaIODL

13. Crossbow. (2007). MPR/MIB User’s Manual. Retrieved 2014, from

http://paginas.fe.up.pt/~ee03061/Files/mpr-mib_series_users_manual.pdf

14. Crossbow. (2014). Retrieved 2014, from MoteWorks Getting Started Guide:

http://www.memsic.com.cn/index.php?option=com_phocadownload&view=category&download

=270%3Amoteworks-getting-started-guide&id=6%3Auser-manuals&Itemid=86&lang=zh

112

15. IMALEX. (2014). Wireless Sensor Network Development Environment. Retrieved 2014, from

http://blog.csdn.net/imalex/article/details/9106157

16. Lang, M. (2006). TinyOS. Retrieved 2014, from

https://koala.cs.pub.ro/redmine/attachments/download/154/ami-report-23_Lang_tinyos.pdf

17. Mazidi, M. A., & Causey, D. (2009). HCS 12 MICROCONTROLLER AND EMBEDDED

SYSTEMS. Person Prentice Hall.

18. Memsic. (2010). XMesh User Manual. Retrieved 2014, from

http://www.devisersoftware.com/uploads/flink/2014320132832286.pdf

19. Mitra, S. K., Chakraborty, A., Mondal, S., & Naskar, M. (2014). Simulation of Wireless Sensor

Networks UsingTinyOS- A case study. Retrieved 2014, from

http://www.academia.edu/438512/Simulation_of_Wireless_Sensor_Networks_Using_TinyOS-

A_Case_Study

20. Nack, F. (2010). An Overview on Wireless Sensor Networks. Institute of Computer Science,

Freie University Berlin.

21. Ren, X., & Yang, Z. (2010). Research on the key issue in video sensor network. International

Conference on Computer Science and Information Technology.

22. Tutorialspoint. (2014). C - Operators. Retrieved 2014, from tutorialspoint:

http://www.tutorialspoint.com/cprogramming/c_operators.htm

23. Wikipedia. (n.d.). Retrieved 2014, from http://en.wikipedia.org/wiki/PuTTY

24. Wikipedia. (2014). Retrieved 2014, from

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

	Developing a Wireless Sensor Network Programming Language Application Guide Using Memsic Devices and LabVIEW
	Recommended Citation

	Project Report Draft
	Guide Draft new

