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We study several properties of matrix variate beta type 3 distribution. We also derive probability
density functions of the product of two independent random matrices when one of them is beta
type 3. These densities are expressed in terms of Appell’s first hypergeometric function F; and
Humbert’s confluent hypergeometric function @; of matrix arguments. Further, a bimatrix variate
generalization of the beta type 3 distribution is also defined and studied.
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1. Introduction
The beta families of distributions are defined by the density functions
w1 (1-u)’!

B(a, p)

v* (1 +0)"@P)

B(a,p)

, O<ux<l, (1.1)
, v>0, (1.2)

respectively, where a > 0, f > 0, and

T(@)T ()

B(a,p) = Tasp)

(1.3)

The beta type 1 and beta type 2 are very flexible distributions for positive random variables
and have wide applications in statistical analysis, for example, see Johnson et al. [1].
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Recently, Cardefio et al. [2] have defined and studied family of beta type 3 distributions. A
random variable w is said to follow a beta type 3 distribution if its density function is given

by

200% (1 - w)P™

B(a, B) (1 +w)™*’

O<w<1. (1.4)

If a random variable u has the p.d.f (1.1), then we will write u ~ Bl(a, ), and if the
p-d.f. of a random variable v is given by (1.2), then v ~ B2(a, §). The density (1.4) will be
designated by w ~ B3(«, f). The matrix variate generalizations of (1.1) and (1.2) have been
studied extensively in the literature, for example, see Gupta and Nagar [3]. The matrix variate
beta type 3 distribution has been defined, and some of its properties have been studied by
Gupta and Nagar [4].

In this paper, we study several properties of matrix variate beta type 3 distribution. We
also derive probability density functions of the product of two independent random matrices
when one of them is beta type 3. We also define bimatrix beta type 3 distribution and study
some of its properties.

2. Some Known Results and Definitions

We begin with a brief review of some definitions and notations. We adhere to standard
notations (cf. Gupta and Nagar [3]). Let A = (a;;) be an m x m matrix. Then, A’ denotes
the transpose of A; tr(A) = a1 + -+ + amm; etr(A) = exp(tr(A)); det(A) = determinant of A;
|All = norm of A; A > 0 means that A is symmetric positive definite and A'/? denotes the
unique symmetric positive definite square root of A > 0. The multivariate gamma function
which is frequently used in multivariate statistical analysis is defined by

[(a) = f etr(-X)det(X)*"/2gx
x>0

— m(m-1)/4 _ 1— m —
i EM” 2 ) Re(a) > =3
The multivariate generalization of the beta function is given by
In
B, (a,b) = j det(X)“_(m”)/zdet(Im _ X)b—(m+1)/2dX
O (2.2)
Tu(@Tu(b)
= Toarb) - B, (b, a),

where Re(a) > (m—1)/2 and Re(b) > (m—-1)/2.
The generalized hypergeometric coefficient (a),, is defined by

(a), = ﬁ(a - %)ri, (2.3)

i=1
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Whete p = (Fi, ... ), 1 2+ 2 Ty 2 0,71 4+ 1 = 7, and (a)y = a(@+1)--(a+k—1),
k =1,2,... with (a), = 1. The generalized hypergeometric function of one matrix is defined

by

‘ (a1)x - (ap), Cr(X)
pFo(ar, ..., apb1,... by X) = %%(bl)x---(bq)x o (2.4)

where a;, i = 1,...,p, bj, j = 1,...,q are arbitrary complex numbers, X (m x m) is a
complex symmetric matrx, and Y, denotes summation over all partitions x. Conditions
for convergence of the series in (2.4) are available in the literature. From (2.4) it follows
that

k

oFo(X) = ZZC xX) _ Z(trk}f) = etr(X), (25)

k=0 x+k k=0 :
Foax) = 3 3 D) e, - xy X <1, 26)

k=0 x+k
(@), Co(X)

1F1(El C, X) kZOKZH((C)K k! ’ (27)
FiabicX)= S Z(”) «Oe GO0 xg <1 28)

k=0 xtk :

The integral representations of the confluent hypergeometric function 1F; and the Gauss
hypergeometric function , F; are given by

F I
1Fi(a;¢; X) = W(C(i—) etr(RX)det(R)* "/ 2det(I,, - R)** "™V/2dR,  (2.9)
I(c) I a-(m+1)/2 c—a—(m+1)/2 b
zFl(a, b, C, X) = m det(R) det(Im - R) det(Im - XR) dR,
m m 0

(2.10)

where Re(a) > (m —1)/2 and Re(c — a) > (m —1)/2. For properties and further results on
these functions the reader is referred to Constantine [5] and Gupta and Nagar [3].

Davis [6, 7] introduced a class of polynomials C;’)‘ (X,Y) of m x m symmetric
matrix arguments X and Y, which are invariant under the transformation (X,Y) —
(HXH',HYH'), H € O(m). For properties and applications of invariant polynomials we
refer to Davis [6, 7], Chikuse [8], and Nagar and Gupta [9]. Let x, A, ¢, and p be ordered
partitions of the nonnegative integers k, Z, f = k + € and r, respectively, into not more than m
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parts. Then
C** (In, L)
K\ _ prA kA _ 9 Vmm 2.11
Cyl(X,X) =65"Cy(X), 6} I (2.11)
Cp(Im)Cr(X)
x,A _ pkA $\im
Cy (X, In) = 6} —Ca (2.12)
COXY)=Ce(X),  CYNXY)=CuU(Y), (2.13)
C(X)CL(Y) = 3, 65 CHH (X, Y), (2.14)

pex-A

where ¢ € x - A signifies that irreducible representation of GI(m, R) indexed by 2¢ occurs in
the decomposition of the Kronecker product 2x®2. of the irreducible representations indexed
by 2x and 2. Further

Ui (£, )T (1, 1)

0" Cy(I,n),
To(t+u,g) 9 3 (L)

Im
f det(R)"V/2get(I,, — R)"*m”)/zcg'*(R, I, - R)dR =

0
(2.15)

b T (t, )T
f det(R)t—(mH)/Zdet(Im _ R)u—(m+1)/2cg,A(ARl BR)dR — ( (i)) (u)

KA

In expressions (2.15) and (2.16), I';,(a, p) is defined by
Tn(a,p) = (a),Im(a). (2.17)

Note that I';,(a,0) = I';,(a), which is the multivariate gamma function.
The matrix variate generalizations of (1.1), (1.2), and (1.4) are given as follows (Gupta
and Nagar [3, 4]).

Definition 2.1. An mxm random symmetric positive definite matrix U is said to have a matrix
variate beta type 1 distribution with parameters (a, §), denoted as U ~ B1(m, a, ), if its p.d.f.
is given by

det(u)a—(m+1)/2det(1'm _ u)ﬂ—(m+1)/2

, 0<U<]I,, (2.18)
B (a, p)

where a > (m—-1)/2and > (m—-1)/2.
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IfU ~ B1(m, a, B), then the cumulative distribution function F(A) = P(U < A) is given

by
rm(a+ﬂ)fm[(m+1)/2] »
F(A) = det(A)
T (B)Tmla+ (m+1)/2] (2.19)
x oFy (a,—ﬂ + mTH;a + mTH;A>, 0<A<I,,
E[det(U)" det(T,y - U)"] = C(a+ )T (B+12) T (a + P) (2.20)

Co(@) T (B)Tm(a+p+r1+12)

Definition 2.2. An m x m random symmetric positive definite matrix V is said to have a matrix
variate beta type 2 distribution with parameters («, 8), denoted as V ~ B2(m, a, f§), if its p.d.f.
is given by

det(V)*" "D 2det(I,, + V)P
Bun(a, p)

, V>0, (2.21)

where a > (m—-1)/2and g > (m—-1)/2.

Definition 2.3. An mxm random symmetric positive definite matrix W is said to have a matrix
variate beta type 3 distribution with parameters (a, ), denoted as W ~ B3(m, a, p), if its p.d.f.
is given by

2madet(W)™ "V 2 det(I,, - WP /2
By (a, )det(I,, + W)**F

, 0<W<I,, (2.22)

where a > (m—-1)/2and > (m—-1)/2.

3. Hypergeometric Functions of Two Matrices

In this section we define Appell’s first hypergeometric function F; and Humbert’s confluent
hypergeometric function @, of m x m symmetric matrices Z; and Z, and give their series
expansions involving invariant polynomials. Following Prudnikov et al. [10, equations
7.2.4(43), (48)], F1 and @, are defined as

rm I a—-(m+1)/2 I c—a—(m+1)/2
Fila,by, by c; Z1, Z2) = (©) f det(V) det(l, - V) CAAERY
I(a)lm(c — a) det(IL, — VZ)b'det(I,, — VZ,)%
m a—(m+1)/2 c—a—(m+1)/2
®, [0, b1;: 20, 2] = T, (c) ,[ det(V) det(I,, b -V) dV’ (32)
L (a)lm(c - a) det(I,, — VZ)"etr(-V Z,)

respectively, where Re(a) > (m —1)/2 and Re(c — a) > (m —1)/2. Note that for by = 0, F;
and @, reduce to ,F; and; F; functions, respectively. Expanding det([,, — VZl)_bl, IVZ1) <1,
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det(L, — VZ) ™, |[VZ| < 1 and etr(V Z,) using (2.6) and (2.5), and applying (2.14), one can
write

det(I,, — VZy) trdet(l,, - VZ,) ™

x & b1),(b2)) . (3.3)
IPIPIPIPY %C NVZL,VZ), 1zl <1, 1Za) <1,
k=0 ¢=0 xkk A\F€ pex-A
det(I,, - VZ1) Petr(VZy)
(3.4)

[ee] [ee] b
3555 3 Gher vz, lzl<

k=0 ¢=0 xk AF€ per-A

Now, substituting (3.3) and (3.4) in (3.1) and (3.2), respectively, and integrating V using
(2.16), the series expansions for F; and @, are derived as

Fi(a,by, by ; Z1, Z5) =§]§]ZZ 3 Bty - )"’C“(zl,zz),

k=0 £=0 xtk A€ per-A kte!
(3.5)

Di[a,bi;c;24, 2] =

< (b1), @y s
C Z1,725).
er:OKFkAZM¢§A kie! (c)y (21.22)

Mis

=~
Il

4. Properties

In this section we derive several properties of the matrix variate beta type 3 distribution. For
the sake of completeness we first state the following results established in Gupta and Nagar

[4].

(1) Let W ~ B3(m,a,p) and A (m x m) be a constant nonsingular matrix. Then, the
density of X = AW A’ is

2madet(X)* "D/ 2det(AA - X)PmHD/2

, 0<X<AA' (4.1)
det(AA")™D/2B, (a, B)det(AA’ + X)*F

(2) Let W ~ B3(m,a,p) and H (m x m) be an orthogonal matrix, whose elements
are either constants or random variables distributed independent of W. Then, the
distribution of W is invariant under the transformation W — HWH’, and is
independent of H in the latter case.

(3) Let W ~ B3(m, a, ). Then, the density of Y = W™ is

2madet(Y — I,,)P""t/2
By (at, B)det(I,, + Y)*F’

Y > I, (4.2)

(4)If U ~ Bl(m,a,p), then (I, +U) (I, - U) ~ B3(m,p,a) and (21, -U)"'U ~
B3(m,a, p).
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(5) If V ~ B2(m, a, B), then (2I,,, + V) 'V ~ B3(m,a, ) and (I,,, + 2V) ™' ~ B3(m, f, a).

(6) If W ~ B3(m,a,p), then 2(I, + W)'W ~ Bl(m,a,p), (I, +W) (I, - W)
Bl(m, B, a), 2(L, - W)W ~ B2(m, a,p),and (1/2)(I,, - W)W ~ B2(m, B, a).

l

(7) Let W = <WH W12>, Wll(q X q) Define W11~2 = W11 - W12W2_21W21 and W22.1 =
War Wa,

W22 - W21W1_11W12. Iftw ~ B3(m, a, ﬂ), then W22~1 ~ B3(m —-q,a— q/2, ﬂ) and W11.2 ~
B3(q,a-(m-q)/2,p).

(8) Let A (g x m) be a constant matrix of rank g (< m). If W ~ B3(m,a, ), then
[(AA)2AWT A (AA) 2] ~ B3(g,a— (m—q)/2, ).

(9) Let W ~ B3(m, a, f) and a € R™, a#0, then ada(@Wa)™" ~ B3(a - (m - 1)/2,p).
Further, if y (m x 1) is a random vector, independent of W, and P(y #0) = 1, then it
follows that y'y(y W-ly) "' ~ B3(a — (m—1)/2, ).

From the above results it is straightforward to show that, if ¢ (m x 1) is a nonzero
constant vector or a random vector independent of W with P(c#0) = 1, then

! W—l_Im _
W™~ Ln)e ~31<ﬁ,a_ m_1>
d(W+1,)c

! —
2c¢ ~Bl<a—m 1,[5),
c’(W*1 + Im)c 2
(4.3)
2c¢

m ~ BZ<a - T,ﬂ),

d(W1-1,)c m—1
S - m(pa- ),

The expectation of W1, E(W™!), can easily be obtained from the above results. For any fixed
ceR™, c#0,

d(W-1T,)c
E[ 2c'c

] = E(v), (4.4)

where v ~ B2(,a — (m — 1) /2). Hence, for all ¢ € R™,

2p m+1
! -1 _ — ! — !
cE(W Im>c 2¢'cE(v) —a_(m+1)/2cc, a>——, (4.5)
which implies that
_ 2p+a—-(m+1)/2 m+1
E 1) = L, ) .
(W) a—(m+1)/2 > (46)
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The matrix variate beta type 3 distribution can be derived by using independent gamma
matrices. An m x m random symmetric positive definite matrix Y is said to have a matrix
variate gamma distribution with parameters ¥ (> 0), and x (> (m —1)/2), denoted by ¥ ~
Ga(m,«x,¥), if its p.d.f. is given by

etr(~W1Y)det(Y)~ /2
T, (x)det(¥)~

, Y>0. (4.7)

It is well known that if Y; and Y, are independent, Y; ~ Ga(m,«;, I,), i = 1,2, then
() (N +Y2) 2V (Y1 + Y2)/? and Y; + Y3 are independent and (ii) Y;/*Y;Y; "% and Y; +
Y, are independent. Further, (Yi +Y2) /21 (Y1 + Y2) /2 ~ Bl(m,x1,%2), Y, /* 1Y, /% ~
B2(m,x1,1;) and Y1 + Yo ~ Ga(m, k1 + k2, I,). In the following theorem we derive similar
result for matrix variate beta type 3 distribution.

Theorem 4.1. Let the m x m random matrices Y1 and Y, be independent, Y; ~ Ga (m,«;, L),
i=1,2 Then, (Y1 +2Y2) 2Y1 (Y1 +2Y2) V2 ~ B3(m, k1, %2).

Proof. The joint density function of Y7 and Y; is given by

etr[- (Y1 + Y»)]det(Y7) "D/ 2get(Y, ke (mHD/2

Y1>0,Y; >0. 4.
Fm(Kl)Fm(Kz) ’ 1> 0, 2> 0 ( 8)

Making the transformation W = Y12y, Y2 and Y = Y, + 2Y, with the Jacobian J(Y;,Y, —
W,Y) = 27m0m)/2det(Y) ™72 in the joint density of Y; and Y,, we obtain the joint density
of Wand Y as

det(W)K1—(m+1)/2det(Im _ W)Kz—(m+1)/2

2me2L (1) (%
m (K1) (102) (4.9)
x etr [—%(Im + W)Y] det(Y)® - m)/2 0 c W < I,,, Y > 0.
Now, the desired result is obtained by integrating Y using (2.1). O

Next, we derive the cumulative distribution function (cdf) and several expected values
of functions of beta type 3 matrix.
If W ~ B3(m, a, ), then the cdf of W, denoted by G(Q2), is given by

G(Q) = P(W < Q)
(4.10)
= P(U < (I + Q) (1 - Q)),
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where U ~ Bl(m, B, a). Now, using (2.19), the cdf G(Q2) is obtained as

Tn(a+ BT, +1)/2 _
G(@) = L@+ A)lnllm+1)/ ]det<(1m + Q) (I, - Q))ﬂ
Lo ()T [+ (m+1) /2]
(4.11)
abi(foas 22 T (4 07 1)),
where 0 < Q < I,,,.
Theorem 4.2. Let W ~ B3(m, a, ), then
E[det(wydet(lm —tW)S] _ yem(pety Lm (@ + 1)l (B+8)Tm(a+p)
det(L,, + W I'm(@T,, (BT (a+pB+r+s
etll + W) @ (BT (a s por+s) i
X 2F1<ﬁ+s,a+ﬂ+t,‘a+ﬁ+r+s;%"),
where Re(a + 1) > (m—1)/2and Re(f+s) > (m—-1)/2.
Proof. By definition
E det(W)"det(I,, - W)°
det(I,, + W)'
(4.13)
Zma IIM det(w)a+r—(m+1)/2det(lm _ W)ﬂ+s—(m+1)/2dw
" Bu(a,p))o det(I,, + W)=+ '
Writing
1 —(a+p+t)
det(L,, + W)~ @*F+) = 2""("‘+ﬂ+t)det<lm 5 (I - W)) (4.14)
and substituting Z = I,, - W, we have
E det(W)"det(I,, - W)°
det(I,, + W)!
1 JJm det(z)ﬁ+s—(m+1)/2det(1 _ Z)a+r—(m+1)/2dz
= = 4.15
2mPOB,, (a, B) ) o det(I,, — Z/2)*P* #15)
_ Bu(a+r,p+s)

L
- F( +s,a+B+ta+ +r+s;—m>,
2m(ﬂ+t) Bm (LI, ﬂ) 21 ﬂ p 16 2

where the integral has been evaluated using integral representation of the Gauss hypergeo-
metric function given in (2.10). O
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Corollary 4.3. Let W ~ B3(m, a, p), then for Re(h) > —a + (m —1)/2, one has

E[ det(W)" ]_ Ty + B)Tn(a + h)

det(Ly + W) |~ 27T, ()T (a+ p+h)’
(4.16)
wl . Twm(a+p)Tm(a+h) ' I,
E[det(w)"] = T a5 B s h)zﬂ <[5,a +pa+prh; 7).
Further, for Re(h) > -+ (m—-1)/2,
T(a+P)Tm(B+h)
E[det(]m + W)h] = —
2T (B) T (@ + p + 1) 417)
x 2F1<ﬁ+h,a+ﬂ;a+ﬂ+h,%m>.
From the density of W, we have
2ma
E[Cc(W)] = ————
[Cc(W)] B, f)
(4.18)
5 J‘Im C(W)det(W)™ "V 2det(I,, - W)F "™ 2qw
0 (I, + W)™ '

Now, expanding (I, + W) “*?) in series involving zonal polynomials using (2.6), the above
expression is rewritten as

B 1 * (a+p),
ElGW)] = 2mPB,, (a, p)%% 200!

(4.19)
Im

x j Ce(W)det(W)* ™ D/2det(1,, - W)P-mD/2C (1,, - W)dW.
0

Further, writing

CeW)Calm = W) = 3 65 Cy (W, L = W) (4.20)
pex-A
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and integrating W using (2.15), we get

E[C,(W)] = . ( ﬂ)zz(mﬁh Zem

=02

Im
x | det(W)* ™D/ 2qet(I,, - W)ﬂ-“"“)/zcgf*(w Ly — W)dW (4.21)
0

(a+p) (@), (B)
zmﬂzz 2¢ 01 : Z ( > ﬁ)lc (Im)

=0 A2

5. Distributions of Random Quadratic Forms

In this section we obtain distributional results for the product of two independent random
matrices involving beta type 3 distribution.

Theorem 5.1. Let X1 ~ Bl(m, ay, 1) and X, ~ B3(m, ay, po) be independent. Then, the p.d.f. of
Z=X1?X:X}) % is

27MPT (a1 + 1) T (a2 + o)
Ly (a) T (a2) T (B1 + B2)

det(z)u]_(m+1)/2det(1m _ Z)ﬂ1+ﬁ2—(m+1)/2

(5.1)
I,-Z
X Fi fo, o1+ pr— g, 00+ Po, 1 + Po; Im — Z, > , 0<Z <1y
Proof. Using the independence, the joint p.d.f. of X; and X is given by
Kidet(X;) =MD/ 2det(1,, — X;)Pr=(m+D/2
det(Xz)azf(m+l)/2det(Im _ XZ)ﬂz—(m+1)/2 (52)
X 4
det(I,, + Xp)@*P?
where0< X;<IL,,i=1,2,and
K1 = 2%" (B, (a1, 1) Bm(az, )} (5.3)

Transforming Z = X1/2X1X1/2 X, = X, with the Jacobian J(X1,X, — Z,X;) =
det(X,)"/2 we obtain the joint p.d.f. of Z and X, as

,det(X, — Z)ﬂr(mu)/zdetum _ Xz)ﬂz—(mﬂ)/z

Kydet(Z)®~ D/
det(Xp) P det(I,, + Xp)*P?

, (5.4)
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where 0 < Z < X, < I;,. To find the marginal p.d.f. of Z, we integrate (5.4) with respect to X5
to get

Kidet(Z)n—(m/2

y JJm det(Xz _ Z)ﬂl—(m+1)/2det(1m _ Xz)ﬂz—(m+1)/2dX2 (55)
z det(X,) P % det(L,, + X»)* P> '

In (5.5) change of variable V = (I, - Z)_l/z(Im - X)), — Z)_l/2 with the Jacobian J(X; —
V) = det(I,, — Z)™*’? yields

Klz—m(az+ﬂ2)det(z)a1—(m+1)/2det(Im _ Z)ﬂ1+ﬂ2—(m+1)/2

y J‘Im det(V)P "D 2det(1,, - V)P-mD2gy
0 det(Ly ~ (I = 2)V)" P det(ly, - (I = Z)V/2)™ (5.6)
= K27 @) det(Z) MM D/ 2get(1,, — Z)PrPr(me)/2 ’
T (B1)Tm (P2) ( In-Z
X F1 n, &1+ pP1—az,ar + Po, + z;Im—Z, ),
L (P1 + f2) P+ Prbr+p 2

where the last step has been obtained by using the definition of F;. Finally, substituting for
K7 we obtain the desired result. O

Corollary 5.2. Let X; and X, be independent random matrices, X1 ~ Bl(m,aq,p1) and X, ~
B3(m, a2, ). If o = a1 + Py, then the p.d.f. of Z = X;/zXlX;/z is given by

2*”‘[’21*,,, (tll + ﬂl + ﬁz)
Lo ()T (B1 + P2)

det(z)al—(m+1)/2det(1m _ Z)ﬂ1+ﬂ2—(m+1)/2

(5.7)
L,-Z
x oF1( Po, a1 + P1 + Po; P1 + Po; > ) 0<Z<1,.

Theorem 5.3. Let Xy and X, be independent random matrices, X; ~ B3(m, a1, p1) and X, ~
B2(m, ay, p2). Then, the p.d.f. of Z = X}/zXZX%/Z is given by

27" B,, (B1, a1 + B2) det(Z) (mD/2
By (a1, 1) B (a2, B2) det(I,, + Z)**

(5.8)
I -
x Fy (,51,0(1 + P, a0+ P ar + P1 + Po; Tm,(lm +7Z) 1>, Z>0.
Proof. Since X; and X, are independent, their joint p.d.f. is given by
X ul—(m+1)/2 I _ X ﬁr(erl)/Z X llz*(m+1)/2
K, det(X1) det(I;m — X1) det(X>) ’ (5.9)

det(I, + X1)“Pidet(I,, + X,)
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where 0 < X < I, X, >0, and
K, =2m= {Bm(a1,ﬁ1)Bm(d2,ﬂ2>}_l. (5.10)

Now consider the transformation Z = X}/ 2XzX%/ 2and V = I, - X; whose Jacobian is
J(X1,X, — V,Z2) =det(l,, - V)f(””l)/z. Thus, we obtain the joint p.d.f. of V and Z as

Kapdet(Z)™ )72 det(V)! "D 2 get(1,,, — vy P im)/2

, (5.11)
2m(ai+pdet (I, + Z)az+ﬂ2 det(I,, - V/2)a1+ﬂ1 det(I,, — (I, + Z)_1V)uz+ﬂz

where Z > 0 and 0 < V < I,,. Finally, integrating V using (3.1) and substituting for K,, we
obtain the desired result. O

In the next theorem we derive the density of Z; = X'/2YX~1/2, where the random
matrices X and Y are independent, X ~ B3(m, a, 8), and the distribution of Y is matrix variate
gamma.

Theorem 5.4. Let the m x m random matrices X and Y be independent, X ~ B3(m,a, ) and Y ~
Ga (m,x, L,). Then, the p.d.f. of Z; = X~V2Y X 1/2 is given by

T+ €)o (a + [3)det(Zl)K_(m+1)/2etr(—Z1)
2Py () Dy (@) T (@ + B+ )

I
(I)1<ﬁ,cx+ﬁ;a+ﬁ+1c; Em,Z1>, (5.12)
where Zy > 0.

Proof. The joint p.d.f. of X and Y is given by

det(X)a—(m+l)/2det(Im _ X)ﬁ—(m+1)/2det(y)x—(m+1)/2

, (5.13)
2-maT (1) B(at, B)det(I,, + X)Petr(Y)

where 0 < X < I, and Y > 0. Now, transforming Z; = X1/2YX 12 and W = I,,, - X, with the
Jacobian J(X,Y — W, Z;) = det(Il,,, - W) ("”1)/2, we obtain the joint p.d.f. of Z; and W as

etr(—Zl)det(Zl)K_("”l)/z det(w)ﬂ—(m+1)/2det(1m _ W)a+1<—(m+1)/2

, 5.14
2mPT (1) B(at, B) det(I,, - W/2)*Petr(-W Z,) 6.14)

where 0 < W < I, and Z; > 0. Now, integrating W using (3.2), we get the marginal density
of Zl. O
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6. Bimatrix Beta Type 3 Distribution

The bimatrix generalization of the beta type 1 density is defined by

det(ul)ar(m+1)/Zdet(uz)az—(mﬂ)/2det(1m Uy - le)ﬁ’("‘”)/z

Bm(alr aZ/ﬂ) (61)
u,>0,U,>0, U;+U, < L,

where a; > (m—-1)/2, a0 > (m-1)/2, > (m—-1)/2,and

Din(a1) T (a2) Ui (ﬁ)

By (a1, a2, ) = (a1 + az + B)

(6.2)

This distribution, denoted by (U1, U) ~ D1(m, a1, a2; B), is a special case of the matrix variate
Dirichlet type 1 distribution. The m x m random symmetric positive definite matrices V; and
V, are said to have a bimatrix variate generalization of the beta type 2 distribution, denoted
as (V1, Vo) ~ D2(m, ay, ap; P), if their joint p.d.f. is given by

det(vl)ul—(m+l)/Zdet(Vz)txz—(m+1)/2

, Vi>0, V>0, (6.3)
B, (ler as, ﬂ)det(Im + Vi + Vz)u1+az+ﬁ

where a; > (m—-1)/2, a2, > (m—-1)/2,and > (m -1)/2.
A natural bimatrix generalization of the beta type 3 distribution can be given as
follows.

Definition 6.1. The m x m symmetric positive definite random matrices W; and W, are said to
have a bimatrix beta type 3 distribution, denoted as (W1, W) ~ D3(m, a1, az; ), if their joint
p.d.f. is given by

det(Wl)a1—(m+1)/2det(W2)az—(m+1)/2det(1m Wy - Wz)ﬂ_(m+l)/2

z_m(“l*'“Z)Bm ([Xl, an, ﬁ)det(Im + Wi+ Wz)vc1+:x2+[5 (64)

W1>0, W, >0, W1+W2<Im,

where a; > (m—-1)/2, > (m—-1)/2,and > (m -1)/2.

The bimatrix beta type 3 distribution belongs to the Liouville family of distributions
and can be obtained using independent gamma matrices as shown in the following theorem.

Theorem 6.2. Let Y1, Y,, and Y3 be independent, Y; ~ Ga (m,«;,I,), i = 1,2,3. Define W; =
(Y1 + Y, +2Y3) Y2Y (Y1 + Yo + 2Y3) V2, i = 1,2. Then, (Wy, Wa) ~ D3(m, k1, K2, K3).

Proof. Similar to the proof of Theorem 4.1. O

The next two theorems derive the bimatrix beta type 3 distribution from the bimatrix
beta type 1 and type 2 distributions.
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Theorem 6.3. Let (U1, Uy) ~ D1(m, ay, az; B) and define

W; = 2L, - Uy - Up) VU2, - Uy - Uy) Y2, i=1,2. (6.5)

Then, (W1, W3) ~ D3(m, a1, a2; ).

Proof. Let Z = 2I,, — Uy — Uy and Wy = Z7V2U,Z7V2. Then, W, = 2Z7 — (I, + Wy). The
Jacobian of the transformation (6.5) is given by

J(Uq, Uy — Wy, Wa) = J(Uy, Uy — W1, Z)J (W1, Z — W1, W)
— det(z)(m+1)/22—m(m+1)/2det(z)m+1 (66)
= 2" D det(L, + Wy + W) 2072,
Now, substituting U; = 2(,,, + Wy + W,)™2W;(I,,, + W1 + W»)™/2,i = 1,2 and the Jacobian in
the joint density of U; and U, given in (6.1), we get the desired result. O

Theorem 6.4. Let (V1,V,) ~ D2(m, a1, ap; B) and define

Wi = QL+ Vi + Vo) V2 Vi@, + Vi+ Vo) V2, i=1,2. (6.7)

Then, (W1, W3) ~ D3(m, a1, a2; ).

Proof. Let Z = 21, + Vi + Vo and Wy = Z7V/2V, Z7V/2 Then, W, = I, - W1 —2Z~!. The Jacobian
of the transformation (6.7) is given by

J(V1, Vo — Wi, Ws) = J(V1, Vo — Wy, Z) J(W1, Z — W1, W2)
— det(z)(m+1)/22—m(m+1)/2det(z)m+l (68)
— 2m(m+1)det(lm _ W1 _ Wz)_3(m+1)/2.
Now, substitution of V; = 2(I,, - W1 — W) *Wi(I,, - Wi = W,)™"/2, i = 1,2, along with the
Jacobian in the joint density of V; and V, given in (6.3) yields the desired result. O

The marginal distribution of Wj, when the random matrices Wi and W, follow a
bimatrix beta type 3 distribution, is given next.

Theorem 6.5. Let (W1, Wy) ~ D3(m, a1, az; B). Then, the marginal p.d.f. of Wy is given by

det(Wl)ul—(mH)/Zdet(Im _ Wl)uz+ﬂ—(m+1)/2
2-m@+a) B, (a1, ap + ) det(L, + Wy)ararth 6

x o Fy <txz, o+ ay + B an + B~ (L + W) (I — W1)>,

where 0 < Wy < L. Further, (I, = W1) ™ 2Wy (L, - W1) ™% ~ B3(m, az, ).
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Proof. Substituting X, = (I, — Wl)fl/ Wo (I, - W1)71/ 2 with the Jacobian J(Wr — X,) =
det(l,, — Wl)(m+1)/ Zin (6.4), the joint density of W; and X, is derived as

Zm(u1+uz)det(W1)dl—(m+1)/2det(1m _ Wl):xz+ﬂ—(m+l)/2
B (a1, az, p)det(,, + Wy )ataeh

(6.10)
det(Xz)az—(mH)/Zdet(Im _ Xz)ﬂ_(’"”)/z

1 ar+ar+f’ 0< Wl <Im, 0 <Xy <Ip.
det(Ln + (Im + W1) ™ (I, — W1)X»)

Now, integration of the above expression with respect to X, yields the marginal density of
Wi. Further, by integrating (6.10) with respect to W; we find the marginal density of X, as

2m(m+az)det(Xz)az—(m+1)/2det(]m _ Xz)ﬁ—(m+1)/z
B, (111/ az, ﬂ)det(Im + Xz)a1+az+ﬂ

(6.11)

In a—(m+1)/2 _ ar+p—(m+1)/2
XJ’ det(W7) det(I,, - Wy) dWl, 0<X, <L,

0 det(Ly + (I + X2) " (I — Xp)Wp)™ ™

Now, by evaluating the above integral using results on Gauss hypergeometric function, we
obtain

J‘Im det(wl)alf(erl)/Zdet(Im _ Wl)a2+ﬂ7(m+1)/2 dW]
0 det(Iy + (I + X2)™ (I — Xo)Wy)™ ™"

_ 1—‘m(al)l—‘m (a2 + ﬂ)
B Fm(al + ap +ﬂ)

_ I‘m(al)rm (“2 + ﬁ)
B Fm(al + ap +ﬂ)

_ rm(al)rm (“2 + ﬂ) 2—ma1 det(I + X2)al.

Fm (a1 + ay + ﬂ)

»Fy <a1,cx1 tay+ B+ ay+ B —(Ly + X2) " (I — X1)>
(6.12)

1Fo (@ =(In + X2) ™ (In = X1))

Finally, substituting (6.12) in (6.11) and simplifying the resulting expression we obtain the
desired result. O

Using the result

2F1(a,b;c; X) = det(I,,, — X)_szl <c —a,b;c;-X(I, - X)_1>, (6.13)
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the Gauss hypergeometric function given in (6.9) can be rewritten as

2Fr (062,061 +ay+ Brag+ B —(Ln + Wi) (L - W1)>

(6.14)
det(I,, + Wy)x+atp I, - W,
- 2mm(a1+a2+ﬂ) 2Fy (ﬁf a +oap + ﬂ; ap + ﬂ} = 5 )
Hence, the density of W can also be written as
det(wl)m—(m+l)/2det(1m _ Wl)a2+ﬁ—(m+1)/2
2mPB,, (a1, ar +
{1,z +f) (6.15)

I, —W;
2

><2F1<ﬂ,a1+a2+ﬂ;zx2+ﬂ; ), 0<W; <1I,.

It can clearly be observed that the p.d.f. in (6.9) is not a beta type 3 density and differs by
a factor involving ,F;. In the next theorem we give distribution of sum of random matrices
distributed jointly as bimatrix beta type 3.

Theorem 6.6. Let (W1, W) ~ D3(m, a1, az; ). Define U = W 2W W2 and W = Wy + W,
Then, (i) U and W are independently distributed, (ii) U ~ B1(m, a1, ay), and (iii) W ~ B3(m, a; +
a, ﬁ)

Proof. Making the transformation U = W~12W, W12 and W = W; + W, with the Jacobian
JW1, W, — U,W) = det(W)"™ /2 in the joint density of (W;, Wa) given by (6.4), we get
the joint density of U and W as

det(L)™ "V 2det(I,, — L) "D/
B (a1, a2)
det(W)* %D 2det(1,, - WP/
2-m@+@) B, (a1 + ay, f)det(I,, + W)™+’

(6.16)

where 0 < U < I, and 0 < W < I,,. From the above factorization, it is easy to see that U and
W are independently distributed. Further, U ~ B1(m, a1, a2) and W ~ B3(m, a1 + ap, ). O

Using Theorem 6.6, the joint moments of det(W;) and det(IV;) are given by

E[det(Wy)" det(W,)"2] = E[det(U)" det(I,, — U)"] E[det(W)"*"], (6.17)

where U ~ Bl(m,a;,a) and W ~ B3(m,a; + a,f). Now, computing E[det(W)""]
and E[det(U)"det(I,, — U)"™] using Corollary 4.3 and (2.20) and simplifying the resulting



18 International Journal of Mathematics and Mathematical Sciences

expression, we obtain

E[det(W,)" det(W,)"?] = Ty(ay + 1) (s + 12) T (1 + @z + )

- Zmﬂl”m(al)l”m(az)l”m(al +ta+f+n +7’2) (6.18)

L,
X 2F1<ﬁ,a1+a2+ﬂ;a1+a2+ﬂ+r1 +r2;? .
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