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2 Departamento de Matemáticas, Universidad de Antioquia, Calle 67, No. 53-108, Medellı́n, Colombia

Correspondence should be addressed to Daya K. Nagar, dayaknagar@yahoo.com

Received 27 September 2008; Accepted 29 May 2009

Recommended by Kenneth Berenhaut

We study several properties of matrix variate beta type 3 distribution. We also derive probability
density functions of the product of two independent random matrices when one of them is beta
type 3. These densities are expressed in terms of Appell’s first hypergeometric function F1 and
Humbert’s confluent hypergeometric functionΦ1 of matrix arguments. Further, a bimatrix variate
generalization of the beta type 3 distribution is also defined and studied.
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1. Introduction

The beta families of distributions are defined by the density functions

uα−1(1 − u)β−1

B
(
α, β

) , 0 < u < 1, (1.1)

vα−1(1 + v)−(α+β)

B
(
α, β

) , v > 0, (1.2)

respectively, where α > 0, β > 0, and

B
(
α, β

)
=

Γ(α)Γ
(
β
)

Γ
(
α + β

) . (1.3)

The beta type 1 and beta type 2 are very flexible distributions for positive random variables
and have wide applications in statistical analysis, for example, see Johnson et al. [1].
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Recently, Cardeño et al. [2] have defined and studied family of beta type 3 distributions. A
random variable w is said to follow a beta type 3 distribution if its density function is given
by

2αwα−1(1 −w)β−1

B
(
α, β

)
(1 +w)α+β

, 0 < w < 1. (1.4)

If a random variable u has the p.d.f (1.1), then we will write u ∼ B1(α, β), and if the
p.d.f. of a random variable v is given by (1.2), then v ∼ B2(α, β). The density (1.4) will be
designated by w ∼ B3(α, β). The matrix variate generalizations of (1.1) and (1.2) have been
studied extensively in the literature, for example, see Gupta andNagar [3]. Thematrix variate
beta type 3 distribution has been defined, and some of its properties have been studied by
Gupta and Nagar [4].

In this paper, we study several properties of matrix variate beta type 3 distribution. We
also derive probability density functions of the product of two independent randommatrices
when one of them is beta type 3. We also define bimatrix beta type 3 distribution and study
some of its properties.

2. Some Known Results and Definitions

We begin with a brief review of some definitions and notations. We adhere to standard
notations (cf. Gupta and Nagar [3]). Let A = (aij) be an m × m matrix. Then, A′ denotes
the transpose of A; tr(A) = a11 + · · · + amm; etr(A) = exp(tr(A)); det(A) = determinant of A;
‖A‖ = norm of A; A > 0 means that A is symmetric positive definite and A1/2 denotes the
unique symmetric positive definite square root of A > 0. The multivariate gamma function
which is frequently used in multivariate statistical analysis is defined by

Γm(a) =
∫

X>0
etr(−X)det(X)a−(m+1)/2dX

= πm(m−1)/4
m∏

i=1

Γ
(
a − i − 1

2

)
, Re(a) >

m − 1
2

.

(2.1)

The multivariate generalization of the beta function is given by

Bm(a, b) =
∫ Im

0
det(X)a−(m+1)/2det(Im −X)b−(m+1)/2dX

=
Γm(a)Γm(b)
Γm(a + b)

= Bm(b, a),

(2.2)

where Re(a) > (m − 1)/2 and Re(b) > (m − 1)/2.
The generalized hypergeometric coefficient (a)ρ is defined by

(a)ρ =
m∏

i=1

(
a − i − 1

2

)

ri

, (2.3)
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where ρ = (r1, . . . , rm), r1 ≥ · · · ≥ rm ≥ 0, r1 + · · · + rm = r, and (a)k = a(a + 1) · · · (a + k − 1),
k = 1, 2, . . . with (a)0 = 1. The generalized hypergeometric function of one matrix is defined
by

pFq

(
a1, . . . , ap; b1, . . . , bq;X

)
=

∞∑

k=0

∑

κ�k

(a1)κ · · · (ap)κ
(b1)κ · · · (bq)κ

Cκ(X)
k!

, (2.4)

where ai, i = 1, . . . , p, bj , j = 1, . . . , q are arbitrary complex numbers, X (m × m) is a
complex symmetric matrx, and

∑
κ�k denotes summation over all partitions κ. Conditions

for convergence of the series in (2.4) are available in the literature. From (2.4) it follows
that

0F0(X) =
∞∑

k=0

∑

κ�k

Cκ(X)
k!

=
∞∑

k=0

(trX)k

k!
= etr(X), (2.5)

1F0(a;X) =
∞∑

k=0

∑

κ�k

(a)κCκ(X)
k!

= det(Im −X)−a, ‖X‖ < 1, (2.6)

1F1(a; c;X) =
∞∑

k=0

∑

κ�k

(a)κ
(c)κ

Cκ(X)
k!

, (2.7)

2F1(a, b; c;X) =
∞∑

k=0

∑

κ�k

(a)κ(b)κ
(c)κ

Cκ(X)
k!

, ‖X‖ < 1. (2.8)

The integral representations of the confluent hypergeometric function 1F1 and the Gauss
hypergeometric function 2F1 are given by

1F1(a; c;X) =
Γm(c)

Γm(a)Γm(c − a)

∫ Im

0
etr(RX)det(R)a−(m+1)/2det(Im − R)c−a−(m+1)/2dR, (2.9)

2F1(a, b; c;X) =
Γm(c)

Γm(a)Γm(c − a)

∫ Im

0
det(R)a−(m+1)/2det(Im − R)c−a−(m+1)/2det(Im −XR)−bdR,

(2.10)

where Re(a) > (m − 1)/2 and Re(c − a) > (m − 1)/2. For properties and further results on
these functions the reader is referred to Constantine [5] and Gupta and Nagar [3].

Davis [6, 7] introduced a class of polynomials Cκ,λ
φ (X,Y ) of m × m symmetric

matrix arguments X and Y , which are invariant under the transformation (X,Y ) →
(HXH ′,HYH ′), H ∈ O(m). For properties and applications of invariant polynomials we
refer to Davis [6, 7], Chikuse [8], and Nagar and Gupta [9]. Let κ, λ, φ, and ρ be ordered
partitions of the nonnegative integers k, 	, f = k + 	 and r, respectively, into not more thanm
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parts. Then

Cκ,λ
φ (X,X) = θκ,λ

φ Cφ(X), θκ,λ
φ =

Cκ,λ
φ (Im, Im)

Cφ(Im)
, (2.11)

Cκ,λ
φ (X, Im) = θκ,λ

φ

Cφ(Im)Cκ(X)
Cκ(Im)

, (2.12)

Cκ,0
κ (X,Y ) ≡ Cκ(X), C0,λ

λ (X,Y ) ≡ Cλ(Y ), (2.13)

Cκ(X)Cλ(Y ) =
∑

φ∈κ·λ
θκ,λ
φ Cκ,λ

φ (X,Y ), (2.14)

where φ ∈ κ · λ signifies that irreducible representation of Gl(m,R) indexed by 2φ occurs in
the decomposition of the Kronecker product 2κ⊗2λ of the irreducible representations indexed
by 2κ and 2λ. Further

∫ Im

0
det(R)t−(m+1)/2det(Im − R)u−(m+1)/2Cκ,λ

φ (R, Im − R)dR =
Γm(t, κ)Γm(u, λ)
Γm

(
t + u, φ

) θκ,λ
φ Cφ(Im),

(2.15)
∫ Im

0
det(R)t−(m+1)/2det(Im − R)u−(m+1)/2Cκ,λ

φ (AR,BR)dR =
Γm

(
t, φ

)
Γm(u)

Γm
(
t + u, φ

) Cκ,λ
φ (A,B). (2.16)

In expressions (2.15) and (2.16), Γm(a, ρ) is defined by

Γm
(
a, ρ

)
= (a)ρΓm(a). (2.17)

Note that Γm(a, 0) = Γm(a), which is the multivariate gamma function.
The matrix variate generalizations of (1.1), (1.2), and (1.4) are given as follows (Gupta

and Nagar [3, 4]).

Definition 2.1. Anm×m random symmetric positive definite matrixU is said to have a matrix
variate beta type 1 distribution with parameters (α, β), denoted asU ∼ B1(m,α, β), if its p.d.f.
is given by

det(U)α−(m+1)/2det(Im −U)β−(m+1)/2

Bm

(
α, β

) , 0 < U < Im, (2.18)

where α > (m − 1)/2 and β > (m − 1)/2.
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IfU ∼ B1(m,α, β), then the cumulative distribution function F(Λ) = P(U < Λ) is given
by

F(Λ) =
Γm

(
α + β

)
Γm[(m + 1)/2]

Γm
(
β
)
Γm[α + (m + 1)/2]

det(Λ)α

× 2F1

(
α,−β +

m + 1
2

;α +
m + 1
2

;Λ
)
, 0 < Λ < Im,

(2.19)

E
[
det(U)r1det(Im −U)r2

]
=

Γm(α + r1)Γm
(
β + r2

)
Γm

(
α + β

)

Γm(α)Γm
(
β
)
Γm

(
α + β + r1 + r2

) . (2.20)

Definition 2.2. Anm×m random symmetric positive definite matrix V is said to have a matrix
variate beta type 2 distribution with parameters (α, β), denoted as V ∼ B2(m,α, β), if its p.d.f.
is given by

det(V )α−(m+1)/2det(Im + V )−(α+β)

Bm

(
α, β

) , V > 0, (2.21)

where α > (m − 1)/2 and β > (m − 1)/2.

Definition 2.3. Anm×m random symmetric positive definite matrixW is said to have amatrix
variate beta type 3 distribution with parameters (α, β), denoted asW ∼ B3(m,α, β), if its p.d.f.
is given by

2mαdet(W)α−(m+1)/2det(Im −W)β−(m+1)/2

Bm

(
α, β

)
det(Im +W)α+β

, 0 < W < Im, (2.22)

where α > (m − 1)/2 and β > (m − 1)/2.

3. Hypergeometric Functions of Two Matrices

In this section we define Appell’s first hypergeometric function F1 and Humbert’s confluent
hypergeometric function Φ1 of m × m symmetric matrices Z1 and Z2 and give their series
expansions involving invariant polynomials. Following Prudnikov et al. [10, equations
7.2.4(43), (48)], F1 andΦ1 are defined as

F1(a, b1, b2; c;Z1, Z2) =
Γm(c)

Γm(a)Γm(c − a)

∫ Im

0

det(V )a−(m+1)/2det(Im − V )c−a−(m+1)/2dV

det(Im − VZ1)b1det(Im − VZ2)b2
, (3.1)

Φ1[a, b1; c;Z1, Z2] =
Γm(c)

Γm(a)Γm(c − a)

∫ Im

0

det(V )a−(m+1)/2det(Im − V )c−a−(m+1)/2dV

det(Im − VZ1)
b1etr(−VZ2)

, (3.2)

respectively, where Re(a) > (m − 1)/2 and Re(c − a) > (m − 1)/2. Note that for b1 = 0, F1

andΦ1 reduce to 2F1 and1F1 functions, respectively. Expanding det(Im − VZ1)
−b1 , ‖VZ1‖ < 1,
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det(Im − VZ2)
−b2 , ‖VZ2‖ < 1 and etr(VZ2) using (2.6) and (2.5), and applying (2.14), one can

write

det(Im − VZ1)−b1det(Im − VZ2)−b2

=
∞∑

k=0

∞∑

	=0

∑

κ�k

∑

λ�	

∑

φ∈κ·λ

(b1)κ(b2)λ
k! 	!

Cκ,λ
φ (VZ1, VZ2), ‖Z1‖ < 1, ‖Z2‖ < 1,

(3.3)

det(Im − VZ1)−b1etr(VZ2)

=
∞∑

k=0

∞∑

	=0

∑

κ�k

∑

λ�	

∑

φ∈κ·λ

(b1)κ
k! 	!

Cκ,λ
φ (VZ1, VZ2), ‖Z1‖ < 1.

(3.4)

Now, substituting (3.3) and (3.4) in (3.1) and (3.2), respectively, and integrating V using
(2.16), the series expansions for F1 and Φ1 are derived as

F1(a, b1, b2; c;Z1, Z2) =
∞∑

k=0

∞∑

	=0

∑

κ�k

∑

λ�	

∑

φ∈κ·λ

(b1)κ(b2)λ
k!	!

(a)φ
(c)φ

Cκ,λ
φ (Z1, Z2),

Φ1[a, b1; c;Z1, Z2] =
∞∑

k=0

∞∑

	=0

∑

κ�k

∑

λ�	

∑

φ∈κ·λ

(b1)κ
k!	!

(a)φ
(c)φ

Cκ,λ
φ (Z1, Z2).

(3.5)

4. Properties

In this section we derive several properties of the matrix variate beta type 3 distribution. For
the sake of completeness we first state the following results established in Gupta and Nagar
[4].

(1) Let W ∼ B3(m,α, β) and A (m × m) be a constant nonsingular matrix. Then, the
density of X = AWA′ is

2mαdet(X)α−(m+1)/2det(AA′ −X)β−(m+1)/2

det(AA′)−(m+1)/2Bm

(
α, β

)
det(AA′ +X)α+β

, 0 < X < AA′. (4.1)

(2) Let W ∼ B3(m,α, β) and H (m × m) be an orthogonal matrix, whose elements
are either constants or random variables distributed independent of W . Then, the
distribution of W is invariant under the transformation W → HWH ′, and is
independent of H in the latter case.

(3) Let W ∼ B3(m,α, β). Then, the density of Y = W−1 is

2mαdet(Y − Im)
β−(m+1)/2

Bm

(
α, β

)
det(Im + Y )α+β

, Y > Im. (4.2)

(4) If U ∼ B1(m,α, β), then (Im +U)−1(Im − U) ∼ B3(m, β, α) and (2Im −U)−1U ∼
B3(m,α, β).
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(5) If V ∼ B2(m,α, β), then (2Im + V )−1V ∼ B3(m,α, β) and (Im + 2V )−1 ∼ B3(m, β, α).

(6) If W ∼ B3(m,α, β), then 2(Im +W)−1W ∼ B1(m,α, β), (Im +W)−1(Im − W) ∼
B1(m, β, α), 2(Im −W)−1W ∼ B2(m,α, β), and (1/2)(Im −W)W−1 ∼ B2(m, β, α).

(7) Let W =
(

W11 W12

W21 W22

)
, W11(q × q). Define W11·2 = W11 − W12W

−1
22 W21 and W22·1 =

W22−W21W
−1
11 W12. IfW ∼ B3(m,α, β), thenW22·1 ∼ B3(m−q, α−q/2, β) andW11·2 ∼

B3(q, α − (m − q)/2, β).

(8) Let A (q × m) be a constant matrix of rank q (≤ m). If W ∼ B3(m,α, β), then
[(AA′)−1/2AW−1A′(AA′)−1/2]−1 ∼ B3(q, α − (m − q)/2, β).

(9) Let W ∼ B3(m,α, β) and a ∈ R
m, a/= 0, then a′a(a′W−1a)−1 ∼ B3(α − (m − 1)/2, β).

Further, if y (m × 1) is a random vector, independent ofW , and P(y/= 0) = 1, then it
follows that y′y(y′W−1y)−1 ∼ B3(α − (m − 1)/2, β).

From the above results it is straightforward to show that, if c (m × 1) is a nonzero
constant vector or a random vector independent of W with P(c/= 0) = 1, then

c′
(
W−1 − Im

)
c

c′
(
W−1 + Im

)
c
∼ B1

(
β, α − m − 1

2

)
,

2c′c
c′
(
W−1 + Im

)
c
∼ B1

(
α − m − 1

2
, β

)
,

2c′c
c′
(
W−1 − Im

)
c
∼ B2

(
α − m − 1

2
, β

)
,

c′
(
W−1 − Im

)
c

2c′c
∼ B2

(
β, α − m − 1

2

)
.

(4.3)

The expectation ofW−1, E(W−1), can easily be obtained from the above results. For any fixed
c ∈ R

m, c/= 0,

E

[
c′
(
W−1 − Im

)
c

2c′c

]

= E(v), (4.4)

where v ∼ B2(β, α − (m − 1)/2). Hence, for all c ∈ R
m,

c′E
(
W−1 − Im

)
c = 2c′cE(v) =

2β
α − (m + 1)/2

c′c, α >
m + 1
2

, (4.5)

which implies that

E
(
W−1

)
=

2β + α − (m + 1)/2
α − (m + 1)/2

Im, α >
m + 1
2

. (4.6)
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The matrix variate beta type 3 distribution can be derived by using independent gamma
matrices. An m × m random symmetric positive definite matrix Y is said to have a matrix
variate gamma distribution with parameters Ψ (> 0), and κ (> (m − 1)/2), denoted by Y ∼
Ga(m,κ,Ψ), if its p.d.f. is given by

etr
(−Ψ−1Y

)
det(Y )κ−(m+1)/2

Γm(κ)det(Ψ)κ
, Y > 0. (4.7)

It is well known that if Y1 and Y2 are independent, Yi ∼ Ga(m,κi, Im), i = 1, 2, then
(i) (Y1 + Y2)

−1/2Y1(Y1 + Y2)
−1/2 and Y1 + Y2 are independent and (ii) Y−1/2

2 Y1Y
−1/2
2 and Y1 +

Y2 are independent. Further, (Y1 + Y2)
−1/2Y1(Y1 + Y2)

−1/2 ∼ B1(m,κ1, κ2), Y
−1/2
2 Y1Y

−1/2
2 ∼

B2(m,κ1, κ2) and Y1 + Y2 ∼ Ga(m,κ1 + κ2, Im). In the following theorem we derive similar
result for matrix variate beta type 3 distribution.

Theorem 4.1. Let the m × m random matrices Y1 and Y2 be independent, Yi ∼ Ga (m,κi, Im),
i = 1, 2. Then, (Y1 + 2Y2)

−1/2Y1(Y1 + 2Y2)
−1/2 ∼ B3(m,κ1, κ2).

Proof. The joint density function of Y1 and Y2 is given by

etr[−(Y1 + Y2)]det(Y1)
κ1−(m+1)/2det(Y2)

κ2−(m+1)/2

Γm(κ1)Γm(κ2)
, Y1 > 0, Y2 > 0. (4.8)

Making the transformation W = Y−1/2Y1Y
−1/2 and Y = Y1 + 2Y2 with the Jacobian J(Y1, Y2 →

W,Y ) = 2−m(m+1)/2det(Y )(m+1)/2 in the joint density of Y1 and Y2, we obtain the joint density
ofW and Y as

det(W)κ1−(m+1)/2det(Im −W)κ2−(m+1)/2

2mκ2Γm(κ1)Γm(κ2)

× etr
[
−1
2
(Im +W)Y

]
det(Y )κ1+κ2−(m+1)/2, 0 < W < Im, Y > 0.

(4.9)

Now, the desired result is obtained by integrating Y using (2.1).

Next, we derive the cumulative distribution function (cdf) and several expected values
of functions of beta type 3 matrix.

IfW ∼ B3(m,α, β), then the cdf of W , denoted by G(Ω), is given by

G(Ω) = P(W < Ω)

= P
(
U < (Im + Ω)−1(Im −Ω)

)
,

(4.10)
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where U ∼ B1(m, β, α). Now, using (2.19), the cdf G(Ω) is obtained as

G(Ω) =
Γm

(
α + β

)
Γm[(m + 1)/2]

Γm(α)Γm
[
β + (m + 1)/2

]det
(
(Im + Ω)−1(Im −Ω)

)β

× 2F1

(
β,−α +

m + 1
2

; β +
m + 1
2

; (Im + Ω)−1(Im −Ω)
)
,

(4.11)

where 0 < Ω < Im.

Theorem 4.2. LetW ∼ B3(m,α, β), then

E

[
det(W)rdet(Im −W)s

det(Im +W)t

]

= 2−m(β+t) Γm(α + r)Γm
(
β + s

)
Γm

(
α + β

)

Γm(α)Γm
(
β
)
Γm

(
α + β + r + s

)

× 2F1

(
β + s, α + β + t;α + β + r + s;

Im
2

)
,

(4.12)

where Re(α + r) > (m − 1)/2 and Re(β + s) > (m − 1)/2.

Proof. By definition

E

[
det(W)rdet(Im −W)s

det(Im +W)t

]

=
2mα

Bm

(
α, β

)
∫ Im

0

det(W)α+r−(m+1)/2det(Im −W)β+s−(m+1)/2dW

det(Im +W)α+β+t
.

(4.13)

Writing

det(Im +W)−(α+β+t) = 2−m(α+β+t)det
(
Im − 1

2
(Im −W)

)−(α+β+t)
(4.14)

and substituting Z = Im −W , we have

E

[
det(W)rdet(Im −W)s

det(Im +W)t

]

=
1

2m(β+t)Bm

(
α, β

)
∫ Im

0

det(Z)β+s−(m+1)/2det(Im − Z)α+r−(m+1)/2dZ

det(Im − Z/2)α+β+t

=
Bm

(
α + r, β + s

)

2m(β+t)Bm

(
α, β

) 2F1

(
β + s, α + β + t;α + β + r + s;

Im
2

)
,

(4.15)

where the integral has been evaluated using integral representation of the Gauss hypergeo-
metric function given in (2.10).
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Corollary 4.3. LetW ∼ B3(m,α, β), then for Re(h) > −α + (m − 1)/2, one has

E

[
det(W)h

det(Im +W)h

]

=
Γm

(
α + β

)
Γm(α + h)

2mhΓm(α)Γm
(
α + β + h

) ,

E
[
det(W)h

]
=

Γm
(
α + β

)
Γm(α + h)

2mβΓm(α)Γm
(
α + β + h

)2F1

(
β, α + β;α + β + h;

Im
2

)
.

(4.16)

Further, for Re(h) > −β + (m − 1)/2,

E
[
det(Im +W)h

]
=

Γm
(
α + β

)
Γm

(
β + h

)

2mβΓm
(
β
)
Γm

(
α + β + h

)

× 2F1

(
β + h, α + β;α + β + h,

Im
2

)
.

(4.17)

From the density of W , we have

E[Cκ(W)] =
2mα

Bm

(
α, β

)

×
∫ Im

0

Cκ(W)det(W)α−(m+1)/2det(Im −W)β−(m+1)/2dW

(Im +W)α+β
.

(4.18)

Now, expanding (Im +W)−(α+β) in series involving zonal polynomials using (2.6), the above
expression is rewritten as

E[Cκ(W)] =
1

2mβBm

(
α, β

)
∞∑

	=0

∑

λ�	

(α + β)λ
2		!

×
∫ Im

0
Cκ(W)det(W)α−(m+1)/2det(Im −W)β−(m+1)/2Cλ(Im −W)dW.

(4.19)

Further, writing

Cκ(W)Cλ(Im −W) =
∑

φ∈κ·λ
θκ,λ
φ Cκ,λ

φ (W, Im −W) (4.20)
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and integrating W using (2.15), we get

E[Cκ(W)] =
1

2mβBm

(
α, β

)
∞∑

	=0

∑

λ�	

(α + β)λ
2		!

∑

φ∈κ·λ
θκ,λ
φ

×
∫ Im

0
det(W)α−(m+1)/2det(Im −W)β−(m+1)/2Cκ,λ

φ (W, Im −W)dW

=
1

2mβ

∞∑

	=0

∑

λ�	

(α + β)λ
2		!

∑

φ∈κ·λ

(
θκ,λ
φ

)2 (α)κ(β)λ
(α + β)φ

Cφ(Im).

(4.21)

5. Distributions of Random Quadratic Forms

In this section we obtain distributional results for the product of two independent random
matrices involving beta type 3 distribution.

Theorem 5.1. Let X1 ∼ B1(m,α1, β1) and X2 ∼ B3(m,α2, β2) be independent. Then, the p.d.f. of
Z = X1/2

2 X1X
1/2
2 is

2−mβ2Γm
(
α1 + β1

)
Γm

(
α2 + β2

)

Γm(α1)Γm(α2)Γm
(
β1 + β2

) det(Z)α1−(m+1)/2det(Im − Z)β1+β2−(m+1)/2

× F1

(
β2, α1 + β1 − α2, α2 + β2, β1 + β2; Im − Z,

Im − Z

2

)
, 0 < Z < Im.

(5.1)

Proof. Using the independence, the joint p.d.f. of X1 and X2 is given by

K1det(X1)α1−(m+1)/2det(Im −X1)β1−(m+1)/2

× det(X2)
α2−(m+1)/2det(Im −X2)β2−(m+1)/2

det(Im +X2)
α2+β2

,
(5.2)

where 0 < Xi < Im, i = 1, 2, and

K1 = 2α2m
{
Bm

(
α1, β1

)
Bm

(
α2, β2

)}−1
. (5.3)

Transforming Z = X1/2
2 X1X

1/2
2 , X2 = X2 with the Jacobian J(X1, X2 → Z,X2) =

det(X2)
−(m+1)/2 we obtain the joint p.d.f. of Z and X2 as

K1det(Z)α1−(m+1)/2 det(X2 − Z)β1−(m+1)/2det(Im −X2)
β2−(m+1)/2

det(X2)
α1+β1−α2det(Im +X2)

α2+β2
, (5.4)
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where 0 < Z < X2 < Im. To find the marginal p.d.f. of Z, we integrate (5.4) with respect to X2

to get

K1det(Z)α1−(m+1)/2

×
∫ Im

Z

det(X2 − Z)β1−(m+1)/2det(Im −X2)
β2−(m+1)/2dX2

det(X2)
α1+β1−α2det(Im +X2)

α2+β2
.

(5.5)

In (5.5) change of variable V = (Im − Z)−1/2(Im − X2)(Im − Z)−1/2 with the Jacobian J(X2 →
V ) = det(Im − Z)(m+1)/2 yields

K12−m(α2+β2)det(Z)α1−(m+1)/2det(Im − Z)β1+β2−(m+1)/2

×
∫ Im

0

det(V )β2−(m+1)/2det(Im − V )β1−(m+1)/2dV

det(Im − (Im − Z)V )α1+β1−α2det(Im − (Im − Z)V/2)α2+β2

= K12−m(α2+β2)det(Z)α1−(m+1)/2det(Im − Z)β1+β2−(m+1)/2

× Γm
(
β1
)
Γm

(
β2
)

Γm
(
β1 + β2

) F1

(
β2, α1 + β1 − α2, α2 + β2, β1 + β2; Im − Z,

Im − Z

2

)
,

(5.6)

where the last step has been obtained by using the definition of F1. Finally, substituting for
K1 we obtain the desired result.

Corollary 5.2. Let X1 and X2 be independent random matrices, X1 ∼ B1(m,α1, β1) and X2 ∼
B3(m,α2, β2). If α2 = α1 + β1, then the p.d.f. of Z = X1/2

2 X1X
1/2
2 is given by

2−mβ2Γm
(
α1 + β1 + β2

)

Γm(α1)Γm
(
β1 + β2

) det(Z)α1−(m+1)/2det(Im − Z)β1+β2−(m+1)/2

× 2F1

(
β2, α1 + β1 + β2; β1 + β2;

Im − Z

2

)
, 0 < Z < Im.

(5.7)

Theorem 5.3. Let X1 and X2 be independent random matrices, X1 ∼ B3(m,α1, β1) and X2 ∼
B2(m,α2, β2). Then, the p.d.f. of Z = X1/2

1 X2X
1/2
1 is given by

2−mβ1Bm

(
β1, α1 + β2

)

Bm

(
α1, β1

)
Bm

(
α2, β2

)
det(Z)α2−(m+1)/2

det(Im + Z)α2+β2

× F1

(
β1, α1 + β1, α2 + β2;α1 + β1 + β2;

Im
2
, (Im + Z)−1

)
, Z > 0.

(5.8)

Proof. Since X1 and X2 are independent, their joint p.d.f. is given by

K2
det(X1)

α1−(m+1)/2det(Im −X1)
β1−(m+1)/2det(X2)

α2−(m+1)/2

det(Im +X1)
α1+β1det(Im +X2)

α2+β2
, (5.9)
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where 0 < X1 < Im, X2 > 0, and

K2 = 2mα1
{
Bm

(
α1, β1

)
Bm

(
α2, β2

)}−1
. (5.10)

Now consider the transformation Z = X1/2
1 X2X

1/2
1 and V = Im − X1 whose Jacobian is

J(X1, X2 → V,Z) = det(Im − V )−(m+1)/2. Thus, we obtain the joint p.d.f. of V and Z as

K2det(Z)α2−(m+1)/2

2m(α1+β1)det(Im + Z)α2+β2

det(V )β1−(m+1)/2det(Im − V )α1+β2−(m+1)/2

det(Im − V/2)α1+β1det(Im − (Im + Z)−1V )
α2+β2

, (5.11)

where Z > 0 and 0 < V < Im. Finally, integrating V using (3.1) and substituting for K2, we
obtain the desired result.

In the next theorem we derive the density of Z1 = X−1/2YX−1/2, where the random
matricesX and Y are independent,X ∼ B3(m,α, β), and the distribution of Y is matrix variate
gamma.

Theorem 5.4. Let the m ×m random matrices X and Y be independent, X ∼ B3(m,α, β) and Y ∼
Ga (m,κ, Im). Then, the p.d.f. of Z1 = X−1/2YX−1/2 is given by

Γm(α + κ)Γm
(
α + β

)
det(Z1)

κ−(m+1)/2etr(−Z1)

2mβΓm(κ)Γm(α)Γm
(
α + β + κ

) Φ1

(
β, α + β;α + β + κ;

Im
2
, Z1

)
, (5.12)

where Z1 > 0.

Proof. The joint p.d.f. of X and Y is given by

det(X)α−(m+1)/2det(Im −X)β−(m+1)/2det(Y )κ−(m+1)/2

2−mαΓ(κ)B
(
α, β

)
det(Im +X)α+βetr(Y )

, (5.13)

where 0 < X < Im and Y > 0. Now, transforming Z1 = X−1/2YX−1/2 andW = Im −X, with the
Jacobian J(X,Y → W,Z1) = det(Im −W)(m+1)/2, we obtain the joint p.d.f. of Z1 and W as

etr(−Z1)det(Z1)
κ−(m+1)/2

2mβΓ(κ)B
(
α, β

)
det(W)β−(m+1)/2det(Im −W)α+κ−(m+1)/2

det(Im −W/2)α+βetr(−WZ1)
, (5.14)

where 0 < W < Im and Z1 > 0. Now, integrating W using (3.2), we get the marginal density
of Z1.
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6. Bimatrix Beta Type 3 Distribution

The bimatrix generalization of the beta type 1 density is defined by

det(U1)
α1−(m+1)/2det(U2)

α2−(m+1)/2det(Im −U1 −U2)
β−(m+1)/2

Bm

(
α1, α2, β

) ,

U1 > 0, U2 > 0, U1 +U2 < Im,

(6.1)

where α1 > (m − 1)/2, α2 > (m − 1)/2, β > (m − 1)/2, and

Bm

(
α1, α2, β

)
=

Γm(α1)Γm(α2)Γm
(
β
)

Γm
(
α1 + α2 + β

) . (6.2)

This distribution, denoted by (U1, U2) ∼ D1(m,α1, α2; β), is a special case of thematrix variate
Dirichlet type 1 distribution. Them ×m random symmetric positive definite matrices V1 and
V2 are said to have a bimatrix variate generalization of the beta type 2 distribution, denoted
as (V1, V2) ∼ D2(m,α1, α2; β), if their joint p.d.f. is given by

det(V1)
α1−(m+1)/2det(V2)

α2−(m+1)/2

Bm

(
α1, α2, β

)
det(Im + V1 + V2)

α1+α2+β
, V1 > 0, V2 > 0, (6.3)

where α1 > (m − 1)/2, α2 > (m − 1)/2, and β > (m − 1)/2.
A natural bimatrix generalization of the beta type 3 distribution can be given as

follows.

Definition 6.1. Them×m symmetric positive definite randommatricesW1 andW2 are said to
have a bimatrix beta type 3 distribution, denoted as (W1,W2) ∼ D3(m,α1, α2; β), if their joint
p.d.f. is given by

det(W1)
α1−(m+1)/2det(W2)

α2−(m+1)/2det(Im −W1 −W2)
β−(m+1)/2

2−m(α1+α2)Bm

(
α1, α2, β

)
det(Im +W1 +W2)

α1+α2+β
,

W1 > 0, W2 > 0, W1 +W2 < Im,

(6.4)

where α1 > (m − 1)/2, α2 > (m − 1)/2, and β > (m − 1)/2.

The bimatrix beta type 3 distribution belongs to the Liouville family of distributions
and can be obtained using independent gamma matrices as shown in the following theorem.

Theorem 6.2. Let Y1, Y2, and Y3 be independent, Yi ∼ Ga (m,κi, Im), i = 1, 2, 3. Define Wi =
(Y1 + Y2 + 2Y3)

−1/2Yi(Y1 + Y2 + 2Y3)
−1/2, i = 1, 2. Then, (W1,W2) ∼ D3(m,κ1, κ2;κ3).

Proof. Similar to the proof of Theorem 4.1.

The next two theorems derive the bimatrix beta type 3 distribution from the bimatrix
beta type 1 and type 2 distributions.
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Theorem 6.3. Let (U1, U2) ∼ D1(m,α1, α2; β) and define

Wi = (2Im −U1 −U2)−1/2Ui(2Im −U1 −U2)−1/2, i = 1, 2. (6.5)

Then, (W1,W2) ∼ D3(m,α1, α2; β).

Proof. Let Z = 2Im − U1 − U2 and W1 = Z−1/2U1Z
−1/2. Then, W2 = 2Z−1 − (Im + W1). The

Jacobian of the transformation (6.5) is given by

J(U1, U2 −→ W1,W2) = J(U1, U2 −→ W1, Z)J(W1, Z −→ W1,W2)

= det(Z)(m+1)/22−m(m+1)/2det(Z)m+1

= 2m(m+1)det(Im +W1 +W2)
−3(m+1)/2.

(6.6)

Now, substitutingUi = 2(Im +W1 +W2)
−1/2Wi(Im +W1 +W2)

−1/2, i = 1, 2 and the Jacobian in
the joint density of U1 and U2 given in (6.1), we get the desired result.

Theorem 6.4. Let (V1, V2) ∼ D2(m,α1, α2; β) and define

Wi = (2Im + V1 + V2)−1/2Vi(2Im + V1 + V2)−1/2, i = 1, 2. (6.7)

Then, (W1,W2) ∼ D3(m,α1, α2; β).

Proof. Let Z = 2Im +V1 +V2 andW1 = Z−1/2V1Z
−1/2. Then,W2 = Im −W1 − 2Z−1. The Jacobian

of the transformation (6.7) is given by

J(V1, V2 −→ W1,W2) = J(V1, V2 −→ W1, Z)J(W1, Z −→ W1,W2)

= det(Z)(m+1)/22−m(m+1)/2det(Z)m+1

= 2m(m+1)det(Im −W1 −W2)−3(m+1)/2.

(6.8)

Now, substitution of Vi = 2(Im −W1 −W2)
−1/2Wi(Im −W1 −W2)

−1/2, i = 1, 2, along with the
Jacobian in the joint density of V1 and V2 given in (6.3) yields the desired result.

The marginal distribution of W1, when the random matrices W1 and W2 follow a
bimatrix beta type 3 distribution, is given next.

Theorem 6.5. Let (W1,W2) ∼ D3(m,α1, α2; β). Then, the marginal p.d.f. of W1 is given by

det(W1)α1−(m+1)/2det(Im −W1)α2+β−(m+1)/2

2−m(α1+α2)Bm

(
α1, α2 + β

)
det(Im +W1)

α1+α2+β

× 2F1

(
α2, α1 + α2 + β;α2 + β;−(Im +W1)−1(Im −W1)

)
,

(6.9)

where 0 < W1 < Im. Further, (Im −W1)
−1/2W2(Im −W1)

−1/2 ∼ B3(m,α2, β).
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Proof. Substituting X2 = (Im −W1)
−1/2W2(Im −W1)

−1/2 with the Jacobian J(W2 → X2) =
det(Im −W1)

(m+1)/2 in (6.4), the joint density of W1 and X2 is derived as

2m(α1+α2)det(W1)
α1−(m+1)/2det(Im −W1)

α2+β−(m+1)/2

Bm

(
α1, α2, β

)
det(Im +W1)

α1+α2+β

× det(X2)
α2−(m+1)/2det(Im −X2)

β−(m+1)/2

det(Im + (Im +W1)
−1(Im −W1)X2)

α1+α2+β
, 0 < W1 < Im, 0 < X2 < Im.

(6.10)

Now, integration of the above expression with respect to X2 yields the marginal density of
W1. Further, by integrating (6.10) with respect toW1 we find the marginal density of X2 as

2m(α1+α2)det(X2)
α2−(m+1)/2det(Im −X2)

β−(m+1)/2

Bm

(
α1, α2, β

)
det(Im +X2)

α1+α2+β

×
∫ Im

0

det(W1)
α1−(m+1)/2det(Im −W1)

α2+β−(m+1)/2dW1

det(Im + (Im +X2)
−1(Im −X2)W1)

α1+α2+β
, 0 < X2 < Im.

(6.11)

Now, by evaluating the above integral using results on Gauss hypergeometric function, we
obtain

∫ Im

0

det(W1)
α1−(m+1)/2det(Im −W1)

α2+β−(m+1)/2 dW1

det(Im + (Im +X2)
−1(Im −X2)W1)

α1+α2+β

=
Γm(α1)Γm

(
α2 + β

)

Γm
(
α1 + α2 + β

) 2F1

(
α1, α1 + α2 + β;α1 + α2 + β;−(Im +X2)−1(Im −X1)

)

=
Γm(α1)Γm

(
α2 + β

)

Γm
(
α1 + α2 + β

) 1F0

(
α1;−(Im +X2)−1(Im −X1)

)

=
Γm(α1)Γm

(
α2 + β

)

Γm
(
α1 + α2 + β

) 2−mα1det(Im +X2)α1 .

(6.12)

Finally, substituting (6.12) in (6.11) and simplifying the resulting expression we obtain the
desired result.

Using the result

2F1(a, b; c;X) = det(Im −X)−b2F1

(
c − a, b; c;−X(Im −X)−1

)
, (6.13)
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the Gauss hypergeometric function given in (6.9) can be rewritten as

2F1

(
α2, α1 + α2 + β;α2 + β;−(Im +W1)−1(Im −W1)

)

=
det(Im +W1)α1+α2+β

2m(α1+α2+β) 2F1

(
β, α1 + α2 + β;α2 + β;

Im −W1

2

)
.

(6.14)

Hence, the density of W1 can also be written as

det(W1)α1−(m+1)/2det(Im −W1)
α2+β−(m+1)/2

2mβBm

(
α1, α2 + β

)

× 2F1

(
β, α1 + α2 + β;α2 + β;

Im −W1

2

)
, 0 < W1 < Im.

(6.15)

It can clearly be observed that the p.d.f. in (6.9) is not a beta type 3 density and differs by
a factor involving 2F1. In the next theorem we give distribution of sum of random matrices
distributed jointly as bimatrix beta type 3.

Theorem 6.6. Let (W1,W2) ∼ D3(m,α1, α2; β). Define U = W−1/2W1W
−1/2 and W = W1 +W2.

Then, (i) U and W are independently distributed, (ii) U ∼ B1(m,α1, α2), and (iii) W ∼ B3(m,α1 +
α2, β).

Proof. Making the transformation U = W−1/2W1W
−1/2 and W = W1 + W2 with the Jacobian

J(W1,W2 → U,W) = det(W)(m+1)/2 in the joint density of (W1,W2) given by (6.4), we get
the joint density of U and W as

det(U)α1−(m+1)/2det(Im −U)α2−(m+1)/2

Bm(α1, α2)

× det(W)α1+α2−(m+1)/2det(Im −W)β−(m+1)/2

2−m(α1+α2)Bm

(
α1 + α2, β

)
det(Im +W)α1+α2+β

,

(6.16)

where 0 < U < Im and 0 < W < Im. From the above factorization, it is easy to see that U and
W are independently distributed. Further, U ∼ B1(m,α1, α2) and W ∼ B3(m,α1 + α2, β).

Using Theorem 6.6, the joint moments of det(W1) and det(W2) are given by

E
[
det(W1)r1det(W2)r2

]
= E

[
det(U)r1det(Im −U)r2

]
E
[
det(W)r1+r2

]
, (6.17)

where U ∼ B1(m,α1, α2) and W ∼ B3(m,α1 + α2, β). Now, computing E[det(W)r1+r2]
and E[det(U)r1det(Im −U)r2] using Corollary 4.3 and (2.20) and simplifying the resulting
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expression, we obtain

E
[
det(W1)r1det(W2)r2

]
=

Γm(α1 + r1)Γm(α2 + r2)Γm
(
α1 + α2 + β

)

2mβΓm(α1)Γm(α2)Γm
(
α1 + α2 + β + r1 + r2

)

× 2F1

(
β, α1 + α2 + β;α1 + α2 + β + r1 + r2;

Im
2

)
.

(6.18)
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