
Bowling Green State University Bowling Green State University 

ScholarWorks@BGSU ScholarWorks@BGSU 

Mathematics and Statistics Faculty 
Publications College of Arts and Sciences 

2007 

Unified Analysis of Finite Volume Methods for Second Order Unified Analysis of Finite Volume Methods for Second Order 

Elliptic Problems Elliptic Problems 

So-Hsiang Chou 
Bowling Green State University, chou@bgsu.edu 

Xiu Ye 

Follow this and additional works at: https://scholarworks.bgsu.edu/math_stat_pub 

 Part of the Physical Sciences and Mathematics Commons 

How does access to this work benefit you? Let us know! How does access to this work benefit you? Let us know! 

Repository Citation Repository Citation 
Chou, So-Hsiang and Ye, Xiu, "Unified Analysis of Finite Volume Methods for Second Order Elliptic 
Problems" (2007). Mathematics and Statistics Faculty Publications. 3. 
https://scholarworks.bgsu.edu/math_stat_pub/3 

This Article is brought to you for free and open access by the College of Arts and Sciences at 
ScholarWorks@BGSU. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications by an 
authorized administrator of ScholarWorks@BGSU. 

https://scholarworks.bgsu.edu/
https://scholarworks.bgsu.edu/math_stat_pub
https://scholarworks.bgsu.edu/math_stat_pub
https://scholarworks.bgsu.edu/arts_sci
https://scholarworks.bgsu.edu/math_stat_pub?utm_source=scholarworks.bgsu.edu%2Fmath_stat_pub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/114?utm_source=scholarworks.bgsu.edu%2Fmath_stat_pub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://bgsu.az1.qualtrics.com/jfe/form/SV_82fhWfkYQAvjIEu
https://scholarworks.bgsu.edu/math_stat_pub/3?utm_source=scholarworks.bgsu.edu%2Fmath_stat_pub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages


  Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extend access to SIAM
Journal on Numerical Analysis.

http://www.jstor.org

Unified Analysis of Finite Volume Methods for Second Order Elliptic Problems 
Author(s): So-Hsiang Chou and Xiu Ye 
Source:   SIAM Journal on Numerical Analysis, Vol. 45, No. 4 (2007), pp. 1639-1653
Published by:  Society for Industrial and Applied Mathematics
Stable URL:  http://www.jstor.org/stable/40232836
Accessed: 05-08-2014 13:50 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
 http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content
in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship.
For more information about JSTOR, please contact support@jstor.org.

This content downloaded from 129.1.62.221 on Tue, 05 Aug 2014 13:50:48 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org
http://www.jstor.org/action/showPublisher?publisherCode=siam
http://www.jstor.org/stable/40232836
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


SI AM J. NUMER. ANAL. © 2007 Society for Industrial and Applied Mathematics 
Vol. 45, No. 4, pp. 1639-1653 

UNIFIED ANALYSIS OF FINITE VOLUME METHODS FOR 
SECOND ORDER ELLIPTIC PROBLEMS* 

SO-HSIANG CHOUt AND XIU YE* 

Abstract. We establish a general framework for analyzing the class of finite volume methods 
which employ continuous or totally discontinuous trial functions and piecewise constant test func- 
tions. Under the framework, optimal order convergence in the H1 and L2 norms can be obtained 
in a natural and systematic way for classical finite volume methods and new finite volume methods 
such as discontinuous finite volume methods applied to second order elliptic problems. 

Key words, finite element methods, finite volume methods, discontinuous Galerkin methods, 
finite volume element 

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50 

DOI. 10.1137/050643994 

1. Introduction. Due to the local conservation property and other attractive 
properties such as robustness with unstructured meshes, the finite volume method is 
widely used in computational fluid dynamics. Numerical analysis of a finite volume 
method is more difficult than that of a finite element method, since in general a 
finite volume method uses two different function spaces: one for the trial space and 
one for the test space. For example, obtaining the optimal L2 error estimates is a 
common practice for finite element methods. They are very difficult to obtain for 
the finite volume methods. Because of this reason, the optimal I? estimates have 
not been derived for the finite volume methods proposed in [8, 9, 10, 13, 25]. The 
main motivation of this paper is to propose a general framework under which we 
can systematically give a thorough analysis for finite volume methods to second order 
elliptic problems and obtain the optimal error estimates in energy norm and L2 norm. 

In recent years, there have appeared different approaches in the convergence and 
stability analysis of the finite volume method; see, for example, [2, 5, 6, 12, 13, 16, 
15, 17, 18, 22], among others. Motivated by the popularity of discontinuous Galerkin 
methods, Ye [25] proposed a finite volume method with a totally discontinuous trial 
function space for elliptic problems. Our general framework covers the finite volume 
methods (continuous or discontinuous) developed in all of the papers mentioned above 
in a unified way, and previously hard-to-obtain optimal L2 estimates [8, 10, 9, 13, 25] 
can now be derived naturally. 

For simplicity in this paper we will treat only finite volume methods applied to the 
self-adjoint elliptic equations. To illustrate the idea, we consider the model problem 

(1.1) Cu := -V • AVu = f in ft, u = 0 on dQ, 

where Q, C R2 is a bounded polygonal domain and A is in either Wl>°° or W2'°°. A 
typical finite volume method uses piecewise constant functions as test functions, and, 
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1640 SO-HSIANG CHOU AND XIU YE 

Fig. 1. Primal and dual grids. Left figure: Conforming finite volume method. Right figure: 
Nonconforming finite volume method. 

P2 

*5 C 

to keep the same dimension for the spaces of the trial functions and test functions, two 
different partitions of the domain ft are needed: one called the primal partition is asso- 
ciated with the trial space, and one called the dual partition is associated with the test 
space. For example, in Figure 1, on the left the primal partition is made up of the stan- 
dard triangular finite elements, and the dual partition is the usual barycentric subdivi- 
sion consisting of polygons around P*'s obtained by connecting midpoints M«'s of edges 
and barycenters Q^s of the triangles. Thus M1Q1M2Q2M3Q3M4Q4M5Q5M6Q6 is a 
typical dual volume around Pq. On the other hand, in the right figure of Figure 1 
we use triangles in the primal partition, and for each midpoint of an edge in the 
triangles we define a quadrilateral element that serves as an element in the dual par- 
tition. So, for example, in Figure 1 the quadrilateral EB\CB2 around midpoint P 
(Bi barycenters of triangles) is in the dual partition. 

Figure 2 shows two more possible configurations of primal (solid lines) and dual 
(dashed lines) partitions. In particular, the partitions in the right figure will be 
used for the discontinuous finite volume method in section 3.3. Here we use standard 
triangular elements in the primal partition, and each triangular element then generates 
three dual triangular volumes (AB\D and two others) by connecting its barycenter 
and vertices. 

Denote by Th the primal triangulation of ft, by T£ the dual partition of 7^, and 
by Pi{T) the space of all polynomials on T whose degree is at most /. The finite 
dimensional trial space Vh associated with Th is a subspace of piecewise linears, i.e., 

(1.2) Vhc{veV: v\Te Pi(T) VT e %}, 

where V is either i?o(ft) or L2(ft) (standard Sobolev spaces notation will be adopted 
throughout the paper). Examples of such space are continuous Pi conforming space, 
the Crouzeix-Raviart Pi nonconforming space [14] (continuous at midpoints), and 
totally discontinuous Pi space to be used in conjunction with the discontinuous finite 
volume method in section 3.3. The test function space Qh associated with the dual 
partition T£ is 

(1.3) Qh = {qe L2(ft) : q\K € P0(K) \/K € T£}. 
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UNIFIED ANALYSIS OF FINITE VOLUME METHODS 1641 

Fig. 2. Primal and dual grids. Left figure: Nonconforming finite volume method. Right figure: 
Discontinuous finite volume method. 

A  

« D « F D 

We mention in passing that classical finite volume methods adopt piecewise Po 
shape functions, and their applications abound. The present (and newer) finite volume 
methods using piecewise Pi shape functions also find many practical applications in 
heat transfer and fluid flow problems [7, 21] and the references therein. These methods 
are also natural when combined with the multilevel adaptive methods [19, 20]. 

Due to the efforts of several authors [6, 12, 15, 17], especially [6, 15, 17], it is now 
recognized that, for finite volume methods applied to second order elliptic problems on 
polygonal domains, it is to be expected that, for the exact solution u and approximate 
solution Uh<> the best form of the L2 estimates is 

ll«-ufc||<c*2(IM|a + ||/||i). 
(We use || • ||p for the standard Sobolev Hp norm and drop the subindex for the L2 
norm.) One notes that this is not the same as assuming u in H3(il). For example, 
the solution of the boundary value problem Au = 1 on the unit square and w = 0on 
the boundary belongs to H2{0) but not to if3 (ft). While it is easy and natural to 
deduce the above error estimates under our present framework, it should be pointed 
out that there are other ways to view finite volume methods, depending on how 
one views what the distinctive traits of a finite volume method are. For example, 
one may consider the so-called mixed finite volume method in which the flux can 
be recovered by a simple formula [11]. On the other hand, in other finite volume 
methods the flux itself plays an important role in the derivation of the method. For 
instance, in [16], finite volume methods are based on considering averages of solutions 
on the control volumes which coincide with the supports of the test functions in the 
present paper. The stiffness matrix is calculated from a difference approximation 
of the fluxes between two neighboring elements. Compactness methods are used 
to prove the convergence. While this approach can be generalized consistently to 
convection-diffusion and hyperbolic problems, it shows considerable difficulties when 
error estimates are to be obtained. Our approach focuses on a narrower elliptic 
problem class and explores its natural relation to the Galerkin finite element method. 
Consequently, optimal order error estimates are easier to obtain. 
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1642 SO-HSIANG CHOU AND XIU YE 

The organization of the paper is as follows. In section 2 we present our general 
finite volume framework and its stability and convergent analysis. Under this frame- 
work, in section 3 we systematically derive for the new as well as the old finite volume 
methods the optimal H l estimates of the usual form and optimal L2 estimates of the 
above form. 

Let e be an interior edge common to elements T\ and Ti in 7^, and let ni and 112 
be the unit normal vectors on e exterior to K\ and AT2, respectively. For a scalar q 
and a vector w we define their average {•} on e and jump [•] across e, respectively, as 

M = 
jfalw1! + Q\dT2)> U] = QldTttii + q\dT2n2, 

{w} = -Marx 4- w|ara), W = w|aTl • ni + w|ar2 • n2. 

Note that the jump of a vector is a scalar, whereas the jump of a scalar is a vector. 
If e is an edge on the boundary of fi, we define 

{q} = q, [w] = w • n. 

The quantities [q\ and {w} on boundary edges are defined analogously. Let €h denote 
the union of the boundaries of the triangles T of Th and £® := £h\d£l the collection 
of all interior edges. 

Following [8, 12], we assume the existence of a transfer operator 7 from V(h) := 
Vh 4- H2(ft) fl Hq (ft) to the test space Qh- In particular, 7 connects the trial space Vh 
with the test space Qh- Throughout the paper, the operator 7 is required to satisfy 
the following sets of assumptions. 

Assumption 1. Quadraturelike and restriction assumptions for 7: 

(1.4) f(v-iv)dx = 0 VveVh, VTeTh, 
Jt 

(1.5) f(v-<yv)ds = 0 Vv e H2(Th), Ve € #T, VT € Th, 
Je 

(1.6) if [v] = 0, then [jv] = 0, 

where H2(Th) := {v e L2(il) : v\T € H2(T) VT G Th}. 
Equations (1.4)-(1.5) have been observed in [12, 13] and perhaps can be viewed 

as a type of quadrature condition. Equation (1.6) is our new observation in this paper 
regarding to the jump. 

Assumption 2. Approximation property of 7: 

(1.7) \\w» - w\\o,t < Chr\w\i,T VT eTh. 

Then the solution of (1.1) necessarily satisfies 

(1.8) Cu = -S7AVu = f onK VKeT£, 
(1.9) [)i=0 Veeffc, 
(1.10) {AVu]e=0 VeeSl 

2. Finite volume formulation. In this section, we will derive a general formu- 
lation for finite volume methods. The formulation is based on enforcing (1.8)-(1.10) 
by testing with "element" test functions for (1.8) and "edge" test functions for (1.9) 
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UNIFIED ANALYSIS OF FINITE VOLUME METHODS 1643 

and (1.10). To this end, we further assume the existence of two linear operators 
Bx : V(h) -> L2(£h) and B2 : V(h) -> L2(£%) (they will be denned shortly). Testing 
(1.8), (1.9), and (1.10) by 71;, B\v, and B2V, respectively, and adding them up, we 
obtain the "global" equation 

(2.1) (£u, iv)T* + (bu],Biv)Sh + (MVuJ, B2v)*o = (/, 71;), 

where each inner product obviously means the sum of its local inner products. A 
remark is in order here. Interpreting PDEs and jump conditions such as (1.8)-(1.10) 
as residual equations and testing them with test functions of different levels is, of 
course, quite common in finite element and finite volume methods. However, the fact 
that summing them up as equal weight relations can lead to fruitful analysis is more 
recent. In fact, using this technique Brezzi et al. [4] have demonstrated stabilization 
mechanisms in discontinuous Galerkin methods in a unified way. 

Integrating (2.1) by parts and using the fact that ̂v is constant on K, we have 

(Cu^yu)r* = - ^2 / ^ 
' AVwyvdx 

= - V^ / AVu - wyvds 
KeT* JdK 

= I - Y^ / AVu • wyvds + V^ / AVu • nrfvds I 
\ Ker,ydK TeT,^dT ) 
- S^ / AVu - nyvds, 

ferhJ&r 

where we have added and subtracted the last term to bring in the effect of primal 
triangulation. 

Define the bilinear form a : V(h) x V(h) - > R 

a(u,v) := - ^^ / AVu'Wyvds+ ̂  / AVu • njvds. 
KeT* ^dK T€Th dT 

Recall the following easily derived identity (or see [1]): For all q e Y\TeTl L2(dT) and 

forallv€[nTGr^2(^)]2^ 

(2.2) V / qvnds= f [q]{v}d8 + f {q}[v]ds. 

In particular, 

(2.3) V / AVun-yvds=^2 Je [ bv\ ' {AVu}ds + ^ Je 
{<yv}lAVujds, 

TeTh JdT eeSh Je ee£« Je 

and hence (2.1) becomes 

a(ti, v) - HAVul {7v})en - ({AVu}, lyv])eh 
+ ([-yulBiv)€h + {lAVulB2v)eo = {f^v). 

This content downloaded from 129.1.62.221 on Tue, 05 Aug 2014 13:50:48 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1644 SO-HSIANG CHOU AND XIU YE 

The choice of B^v = {*yv} leads to 

a(u,v) - ({AVu}, [Tv])eh + (M,Biv)eh = (/,7t>)« 

Furthermore, if we take the common pick of B\v = ah"l[yv] + 6{AVv}, where a is 
a positive number and 6 = 1, - 1, the above equation becomes 

a(u,v) - (MVu}, I<yt/])£fc + «([7ul, {.AVi;})^ + a/r^b^I, h^I)^ = (/,7t>)- 

For simplicity, we will fix our choices and take B\v = ah"1 [717] + 6{AVv} and 
Biv = {jv} in the remaining part of the paper. However, our analysis carries through 
for other choices in [4] as well. 

Let 

(2.4) A(u,v) := a(u,v) - ({AVu}, [<yv])eh + «(M, {AVv})€h + o^lW, M)^, 

and consider the following class of finite volume methods: Find Uh € Vh 

(2.5) i4(tifc,t;) = (/,7v) Vv € W 

The formulation (2.5) is consistent; i.e., the true solution u satisfies 

(2.6) A(u,v) = (f^v) VveVh. 

Subtracting (2.5) from (2.6) gives 

(2.7) A(u - tifc, v) = 0 Vi; G Vh. 

We define a norm ||| • ||| on V( h) as 

lll«lll2 = M?,* + £ fottf + E iZKt- 
e€£h TeTh 

We assume the bilinear for A(-, •) is bounded and coercive: 
Assumption 3. 

(2.8) Mt;,ti/)| < C'i|t;|||ti;i W,w e V(h) x F(/i), 

(2.9) A(t/,t;)>C2|t;||2 Vv € %. 

Then we have the following theorem that is the counterpart of Cea's lemma [3] in the 
finite element theory. 

Theorem 2.1. Let u and uh be the solutions of (1.1) and (2.5). Then 

|ti-ufc|<C inf |u-t;|. v€Vh 

Proof. From (2.9) and (2.7), we have that for any v eVh 

Ci||K - v|2 < A(uh -v,uh-v) = A(u -v,uh-v)< C2lu - v%luh - v|. 

Hence by the triangle inequality we have 

«|u-Uh||<Cinf |tt-w|. vevh 

This completes the proof. D 
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UNIFIED ANALYSIS OF FINITE VOLUME METHODS 1645 

To obtain the L2 error estimate for our general finite volume formulation (2.5), 
we assume that the bilinear form a(v, w) satisfies the following equations. 

Assumption 4. For any v,w e V(h), 

a(v, w) = (AVh,v, Vhw) + ^2 / AHv • n{^w - w)ds 

(2.10) + Yl (V " ̂Vv» w ~ 1w)t- 
Terh 

For this reason, we shall take 6 = -1 in the following analysis. 
Theorem 2.2. Let u e H2(Q) n H£(ty and uh e Vh be the solutions of (1.1) 

and (2.5) with 6 = -1, respectively. Assume that A e W2>°°{n) and that (1.4), (1.5), 
(1.7), and (2.10) hold. Then 

||t*-ttfc||<Cfc(|ti-tifc| + ft||/Hi). 

Proof. Let w e Hq(Q,) fl H2(Q) be the solution of the dual problem 

(2.11) - V • AS/w = u - uh in ft, 

(2.12) w = 0 on dil, 

so that the following estimate holds: 

(2.13) \\w\\2<C\\u-uh\\. 

Let wi e Vh be the usual continuous piecewise linear Lagrange interpolant of w, so 
that 

(2.14) lw-wfl<Ch\w\2. 

From (2.11) we deduce that 

\\u - uh\\2 = -{u -uh,V- AVw) 

= (AS7h(u - uh), Vhw) ~ Yl AVw - n(u - uh)ds 
Terh JdT 

(2.15) = (AVh{u - uh), Vhw) - Y, (MVti;}, [u - uh})e, 
eeeh 

where we have used (2.3) and the fact that [.AVw]|e = 0 on all interior edges e. 
On the one hand, (2.10) implies 

a{u - uh, w/) = (AVh(u - uh), VhWi) + ^ {AV{u - uh) • n, iwt - wi)dT 
Terh 

(2.16) + Y (V ' AV(U " Uh^ Wl ~ ̂ ')T' 
Terh 

and, on the other hand, it follows from (2.7) that 

(2.17) a(u - uh,wi) = Y (MVW'}> Hu ~ uh)})e. 
eesh 
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1646 SO-HSIANG CHOU AND XIU YE 

Thus, subtracting (2.16) from the sum of (2.15) and (2.17), we have 

lltz-UfcH2 = CAVfc(u-Ufc),Vfc(ti;-ti;/))- ^ (V • AV(u - u/0,wj - 7™/)t 
rerh 

+ ( E (MV™'}> M" " tlfc)])e " E (MV^>' I" " ̂ De ) 

~ 
E MV(U ~ Uh) ' n> 7™J - Wl)dT 
rerh 

(2.18) ^A+Ja-f /3 + /4. 

The four / terms can be estimated as follows. Using (2.14) and (2.13), we have 

h = {AVh(u - tih), V(w - wi)) < C\u - uh\\w - wi\x 
<Ch\\u-uh\\\u-uh\. 

As for the I2 term, first it follows from (1.1), (1.4), (1.7), and (2.13) that 

Y2 (V • AVu, w/ - 7W/)t = E (f " ^ ^7 ~ 7^/)t 
T€Th T€Th 

^C^U/IUIIu-Ufcll, 
where / is the average of / over each element. Next, 

^2 (y ' -^Vtifc, wi - iwi)t = E (^ ' ̂ ^u^ ~ ^ * -^Vti^, t/;/ - 7Wj)t 
T€T;i T€T/t 

<Cft||^||2foo|Ufc|lffc||t*-ttfc|| 
(2.19) < Cfc||^||a>oo(|u " uh\\ + Il/H) ||u - ^||, 

where V • AVuh is the average of V • AVuh over each element T. 
For the J3 term, using (1.5) and (2.13), we have 

£ (MVW/}, [7(« - «h)])e - E (MVw>' Ku - «*)!)« 
e€£(, e€£;. 

= E (MVti;,}, [7(« - «fc)])e - £ (MVttf}, [7(« - «h)])e 
e€£h e€eh 

+ J2 ({AVW}, |7(tt - ttfc)l)e - E (MVU)}' K« - W")De 
eG^ e€Sh 

~ 
E (MV™ " ^Vfi;}, [(tl - Uh) - 7(li - Ufc)l)e 

:= Ji + J2 
< C/i|u-ufc|||ti-ufc||, 

where >tVti; is the average of AVw over each edge and the J terms are estimated as 
follows. In fact, the Ji terms can be estimated using the following easily derived trace 
inequality [12]: For (/> e HX(T) and for an edge e of T with he the length of e, 

(2.20) U\\l<C{Kl\4>\lT + he\<j>\lT\ 
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UNIFIED ANALYSIS OF FINITE VOLUME METHODS 1647 

where C depends on the shape parameter of T such as the minimal angle of T in the 
triangular case. For instance, 

e€€h 

^ 53 IMVK -W)}|o,e|[7(«-«fc)]|o,e 
e€£/, 

= E IMV(«'/ - tl/)}|0,e ^/2[7(^ " Uh)]e 
eeeh 

< E hl/2 (K1/2\{AV(V1 
- W)}\T + /4/2|MVK - Ul)}|ltT) [7(t* 

- UfOle 
e€£h 

<Cfc||^||0,oo||ti-Ufc||]tt-Ufc], 

where we have used (2.20) in the last inequality. The term Ji can be handled similarly. 
For the I\ term first observe that, for any matrix-valued function M such that 

M is constant on each e € £&, 

5^ / jMV(u - iz/0 • 11(711;/ - it;/)ds = E / -^^u * »(7^/ - tw/)ds 

- V^ / MVuh • n(7tt;/ - wi)ds 

= h + I2 = 0, 

where 7i = 0 due to [.MVu] = 0, and [wi - ywi] = 0 and I2 = 0 due to the fact 
that MVuh • n is a constant on e and (1.5). Now define M so that on each e G £&> 
M = A(m), the value of A at the midpoint: 

\h\= Y,((A-M>*V<<u-Uh^n^Wl~Wl^rr 
Ten 

<c/i||i4||ifoo E (I^-^-HJtwz-w/IW 

(2.21) <C/i||^||i,oo||u-ufc]||u-ufc||o, 

where the last inequality was obtained via the trace inequality (2.20) as before. 
Combining the above four estimates with (2.18), we obtain 

||u-ufc||<Cft(|ti-t*fc| + fc||/lli)- 

This completes the proof. D 
The counterexamples in [15, 17] show that the assumption of / G Hl(Q) is nec- 

essary for finite volume methods. 

3. Applications to finite volume and discontinuous finite volume meth- 
ods. In this section, we will illustrate how our general theory can be applied to analyze 
different finite volume schemes. 
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1648 SO-HSIANG CHOU AND XIU YE 

3.1. Finite volume method with conforming trial functions. The finite 
volume discussed in this subsection is the classical finite volume method. For a given 
regular subdivision Th of triangles, its dual partition T£ is the union of the convex 
hulls. These convex hulls in 7^* are obtained by connecting the barycenters of the 
triangles and the midpoints of the edges of the triangles in 7^ as shown in Figure 1. 

The trial function space associated with Th for the traditional finite volume 
method is defined as 

Vh = {v G Hfoil) : v\T G Pi(T) VT G Th}, 

with V = H^(ft) in (1.2). The test function space is defined as in (1.3). 
Let AT be a set containing all of the interior nodal points associated with the 

partition Th. The operator 7 : V(h) -> Qh is defined by 

(3.1) <yv(x) = Y, <P)Xp{x) Vx G ft, 
Pert 

where \p ls the characteristic function of the dual element Kp associated with the 
node P. It can be easily verified that 7 defined in (3.1) satisfies (1.4)-(1.7). 

The traditional conforming finite volume method is to find Uh G Vh such that for 
any v G Vh 

(3.2) a(ufc,t;) = (/,7f). 

The bilinear form A(v, w) in (2.5) reduces to a(v, w) and 

a(u, v) = - ^ / AVu - wyvds. 

Lemma 3.1. For any v,w e V(h), 

a(v, w) = (AVv, Vw) + ^2 / AVv • n(^w - w)ds 

(3.3) + ]T (V • AVv, w - 7i<;)T. 
rerh 

Proof. Equation (3.3) appeared in [12, 15, 24], and for completeness we include 
a short proof here. For ease of proof, a typical primal triangle in Figure 1 is isolated 
and indexed as in Figure 3. For j = 1,2,3, let D^ denote the quadrilaterals formed 
by the four corner nodes Q, Mj, Pj+i, Mj+i as shown in Figure 3; when out of bound 
we use M4 = Mi and P4 = Pi. Using the divergence theorem on each quadrilateral, 
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Fig. 3. Partial primal and dual grids for integration. 

p3 

i&3/ \ 

/ *X?.  \m 

P2 

we have 

a(v, w) = - Y Y, / ^v ' n^fw^s 

3 ~ 
= Y, 5Z / AVv - wywds - ^ y^(V • AVv^w) 

T£Thj=i-'MJpj+lMi+1 Terh oj 
3 f f = Y™^ V^ / f AVv - n{^w - w)ds + V^ / f wAVv • nds 

- ^2 ^(V ' AVv^w) 
T€Th Oj 

= ^2 AVv • n(<yw - w)ds + ]T (>tVv, S7w)T + Yl ^ ' J^Jv' W^T 
rerh ̂dT Terh rerh 

- J^ ^(V-.4Vf,7w) 
rerh aj 

= (AVv, Vw) + 5Z / ^Vv • n(7ty - w)ds + ^ (V • AVv, w - ^w)t- 0 

This lemma implies that Assumption 3 holds: The boundedness of a(v, w) is 
straightforward. For the proof of coercivity (2.9) on V^, notice the following. First of 
all, |||t;||| = Mi,/*, and so C|H|| < {AVv, Vv) for all v e Vh. The last two terms in the 
right side of (3.3) are the O(h\v\\ h) term when v = w. In fact, just as in estimating 
the h term of (2.21), we have 

Y, I AVvn(7v-v)ds<Ch\\A\\hoo\v\lh 
Terh -*dT 
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and 

(3.4) Yl (V * AVv'v ~ ^t = £ (V • >l • Vt/, t; - V>)t < CftP||i,oo|t;|;,fc, 
TeTh T€Th 

where V A is the vector obtained by applying the divergence rowwise. Thus for h 
small enough we have the coercivity. Note that this last term could be handled like 
(2.19), but this would require A to be in W2t°°, which is unnecessary. 

Applying Theorems 2.1 and 2.2, we have the following results. 
Theorem 3.1. Ifu e flj(fl) n H2(il) and f e Hl(Q), then 

l\u-uh\\\<Ch\\u\\2, 
\\u-Uh\\<Ch2(\\u\\2 + \\fh), 

where the L2 estimate requires A G W2'°°(ft). 
The same conclusions hold for the conforming bilinear trial function case [9], and 

we omit the details. 
3.2. Finite volume method with nonconforming trial functions. For a 

given regular triangulation Th, its dual partition 7^* is the union of quadrilaterals. 
Each quadrilateral in 7^* is made up of two subtriangles which share a common edge 
(see Figure 1). These subtriangles are formed by connecting the barycenter and the 
three corners of the triangles. 

The trial function space associated with Th for the nonconforming finite volume 
method is defined as 

Vh = {ve L2(Q) : v\T e PX(T) VT G Th, 
is continuous at the midpoint of e G £® 
and is zero at the midpoint of boundary edges e on Oil}. 

The test function space is defined as in (1.3). 
Let M be a set containing all of the midpoints of the interior edges associated 

with the triangulation Th. The operator 7 : V(h) - * Qh is defined by 

(3.5) <yv(x) = ]T v(P)xp(x) Vx G ft, 
P€M 

where \p is the characteristic function of dual element Kp associated with the node 
P. The mapping 7 satisfies Assumptions 1 and 2 (see [8]). Finite volume methods 
using the above nonconforming trial functions were considered in [8, 6]. 

Our version [8] is to find Uh G Vh such that for any v G Vh 

(3.6) a(tifc>t;) = (/,7t/). 
The bilinear form A(v, w) in (2.5) reduces to a(v, w) and 

a(u, v) = - ^ / AVu • wyvds. 

Lemma 3.2. For any v,w e V(h), 

a(v, w) = (AVhV, Vhw) + 5Z ^dT / AVv • n(7w - w)ds 
T€Th ̂dT 

+ ]P (V • AVv, w - jw)T. 
T€Th 
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Proof. See Lemma 3.2 in [24]. □ 
Using the above lemma, as before we can prove that (2.8) and (2.9) hold easily. 

Then we have the following estimates. 
Theorem 3.2. Ifu e H$(Q) n H2{Q) and f e Hl(tt), then 

liu-uh\\\<Ch\\u\\2 
l|t*-ufc||<Cft2(|H|2 + ||/||i), 

where the L2 estimate requires A € W2>°°. 
The same conclusions hold for the finite volume method [10] using the rotated 

bilinear trial functions, i.e., the nonconforming Q\ elements on rectangular grids [23]. 
We omit the details here. 

3.3. Finite volume method with totally discontinuous trial functions. 
The finite volume method using totally discontinuous trial functions was first proposed 
in [24]. 

Let Th be a quasiuniform triangulation of £1. We define the dual partition T£ of 
Th for the test function space as follows. We divide each T £ Th into three triangles by 
connecting the barycenter and the three corners of the triangle as shown in Figure 2. 
Let T£ consist of all of these triangles Tj, j = 1, 2, 3. 

We define the finite dimensional space associated with Th for the trial functions 
as 

(3.7) Vh = {ve L2(Q) : v\T e PX(T) VT e Th}. 

The test function space is defined as in (1.3). The operator 7 : V(h) - » Qh is defined 
as 

(3.8) 1v\t = ^- fv\Tds \/TeTh, 

where he is the length of the edge e. The operator 7 satisfies (1.4)-(1.7) (see [25]). 
The discontinuous finite volume method is to find Uh € Vh such that 

(3.9) A(uh, v) = (/, 71;) W e Vh. 

Lemma 3.3. For any v,w e V(h), 

a(v, w) = {AS7hV, Vfcw) + ]P / AVv • n(jw - w)ds 
Teru ̂dT 

(3.10) + ^ (v * ̂Vv> w ~ 7^)t. 
T€Th 

Proof. See Lemma 2.1 in [25]. D 
Using the above lemma, one can prove coercivity and boundedness. 
Lemma 3.4. There is a constant C independent of h such that 

(3.11) A(v,v)>C\lvf VveVh 

for any positive a if 6 = 1 and for a larger enough if6 = -l. 
Proof See Lemma 2.2 in [25]. D 
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Lemma 3.5. Forv,w e V(h), we have 

(3.12) A(t;,ti;)<C|t7||u>|. 

Proof. See Lemma 2.3 in [25]. D 
Since all of the conditions for Theorems 2.1 and 2.2 are satisfied, we have the 

following error estimates for the discontinuous finite volume method. 
Theorem 3.3. Ifu e ftf(H) n H2{Q) and f e H^Sl), then 

\lu-uhl\<Ch\\u\\2, 
||u-^||<C/i2(|H|2 + ||/||i). 

We point out that the above L2 estimate was not obtained in [25]. 
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