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Earth’s Subdecadal Angular 
Momentum Balance from 
Deformation and Rotation Data
Andrew Watkins1, Yuning Fu1 & Richard Gross2

Length-of-Day (LOD) measurements represent variations in the angular momentum of the solid Earth 
(crust and mantle). There is a known ~6-year LOD signal suspected to be due to core-mantle coupling. 
If it is, then the core flow associated with the 6-year LOD signal may also deform the mantle, causing a 
6-year signal in the deformation of the Earth’s surface. Stacking of Global Positioning System (GPS) data 
is found to contain a ~6-year radial deformation signal. We inverted the deformation signal for the outer 
core’s flow and equivalent angular momentum changes, finding good agreement with the LOD signal 
in some cases. These results support the idea of subdecadal core-mantle coupling, but are not robust. 
Interpretation of the results must also take into account methodological limitations. Gravitational field 
changes resulting from solid Earth deformation were also computed and found to be smaller than the 
errors in the currently available data.

The Length-of-Day (LOD) exhibits subtle fluctuations on a variety of timescales. Conservation of angular 
momentum applied to the solid Earth (crust and mantle) requires either mass redistribution or some exter-
nal torque to explain these LOD fluctuations1. Previous investigations have established the outer core as one 
important source of torque on the solid Earth. In these previous investigations, geomagnetic field variations were 
inverted for the outer core’s flow and angular momentum LOC. Researchers found that a torque coupling the ΔLOC 
to the solid Earth would cause LOD changes that agree well with measured ΔLOD on decadal timescales1–3.

There is a ~6-year LOD signal that remains after removing the effects of the oceans and atmosphere1. Both 
the fluid outer core4 and the solid inner core5 have been suggested as causes for the signal. This study aimed to 1)  
Test the idea that the ~6-year LOD signal is due to angular momentum exchange between the solid Earth and 
outer core, and 2) Demonstrate the viability of a novel approach to investigating the core’s rotation: the inversion 
of crustal deformation data.

The Jet Propulsion Laboratory (JPL) produces position solutions for a globally distributed network of Global 
Positioning System (GPS) stations (https://sideshow.jpl.nasa.gov/post/series.html). We analyzed the radial com-
ponent of JPL’s residual time series during the time period 1 January 2002–2014. We analyzed the spectrum of 523 
stacked GPS radial time series, and found there is a global ~6-year deformation signal (Fig. 1). Modeled surface 
loading data6 (red curve in Fig. 1) from the German Research Centre for Geosciences (https://www.gfz-potsdam.
de/en/esmdata/loading/) was bilinearly interpolated to the station locations, and does not account for the ~6-year 
deformation signal.

Surface loading does not account for the ~6-year deformation signal, so the cause may be located within Earth’s 
interior. Fang et al.7 detailed how pressure anomalies below the core-mantle boundary (CMB) deform the solid 
Earth. Using this mathematical framework, we modeled the CMB pressure fluctuations that would explain the 
deformation. Geostrophic flow solutions were computed from the pressure field, and the flow at depth within the 
core was assumed to be organized into nested cylindrical annuli. Equivalent ΔLOC was derived from the flow field.

The ~6-year LOD signal was isolated and used to derive a time series of equivalent solid Earth angular 
momentum changes ΔLMC. Angular momentum conservation of a coupled outer core-solid Earth system gives a 
prediction: Δ = −ΔL LOC MC. Results were compared with this expectation, and gravitational field changes 
resulting from solid Earth deformation were computed.
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Methods
Solid Earth Angular Momentum. We used JPL’s daily COMB2015 Noon dataset8 (https://keof.jpl.nasa.gov)  
to isolate the LOD signal. We first corrected for the effects of the ocean and atmosphere:

Δ = Δ − Δ − ΔLOD LOD LOD LOD (1)corrected oceans atmosphere

The ΔLODoceans term is provided directly by the International Earth Rotation and Reference Systems Service’s 
(IERS) Special Bureau for the Oceans (https://euler.jpl.nasa.gov/sbo/sbo_home.html). This study used the (daily) 
ECCO_kf080h.chi dataset for 2 January 1993 and onward, and linearly interpolated the ECCO_50yr.chi dataset 
(10-day sampling interval) to daily for prior dates. The ΔLODatmosphere accounts for atmospheric angular momen-
tum (AAM) variations and was computed as9:

Δ =
ω

Δ
sLOD (86400 )

C
AAM

(2)atmosphere
mc E

where Cmc is the solid Earth’s axial moment of inertia and ωE is Earth’s mean rotation rate. Raw AAM data is from 
the Reanalysis Project10–13 of the National Center for Environmental Protection (NCEP) and the National Center 
for Atmospheric Research (NCAR) (http://www.aer.com/science-research/earth/earth-mass-and-rotation/
special-bureau-atmosphere). The ΔAAMmass term with the inverted-barometer correction was used. Raw data 
was reported in six-hour intervals. Five consecutive values were added with weights: 1/8, 1/4, 1/4, 1/4, and 1/8 
(respectively), centering the daily average at noon.

A 3rd-order Savitzky-Golay filter with a 1095-day frame was then applied to smooth the dataset. The power 
spectral density of the smoothed LOD then displayed a peak at 5.85 years. This desired signal was extracted via a 
curve fit of the form λ π + ϕtcos(2 /T ), where = . = .T 5 85 years 2, 136 71 days. An equivalent ΔLMC signal was 
formed following equation (2) by replacing ΔLODatmosphere with the fitted signal and ΔAAM with −ΔLMC.

Deformation Signal. The GPS stations used in this study were those with no more than 30% of days missing 
data and no gaps larger than 365-days during the 12-year period under consideration. Linear interpolation filled 
these gaps, and interpolated points were assigned an error estimate of 1 cm.

Monthly (31-day) averages (weighted by inverse-variance) were then taken. A 12-sample moving average was 
then used to smooth the data using the previous six data points, the data point in question, and the following five 
data points. Accordingly, the time stamp for the sample is moved 0.5 samples (15.5 days) backwards. The end-
points where the 12-sample window could not be defined consistently were discarded.

A curve of the form λ π + ϕtcos(2 /T ) was then fit to the time series, where = = .T 6 years 2,191 5 days. This 
curve was taken as the desired signal.

CMB Pressure Anomalies. The radial deformation Δr from CMB pressure anomalies p was given by Fang 
et al.7. As in Fang et al. (1996), we considered the core-mantle boundary and crust to be spherical. We considered 
a finite number of pressure and deformation grid cells on the sphere, and used a discretized form of the equation:

∑ ∑Δ =
π ρ




α + … + α 
= =r

g
3

4
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10
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Figure 1. The spectrum of the straight-stack (arithmetic mean) of 523 GPS radial time series (black curve) 
contains a peak at ~6 years. Loading data (red curve) is modeled non-tidal atmospheric, non-tidal oceanic, and 
hydrological contributions. See the Supplementary Notes for additional details.

https://keof.jpl.nasa.gov
https://euler.jpl.nasa.gov/sbo/sbo_home.html
http://www.aer.com/science-research/earth/earth-mass-and-rotation/special-bureau-atmosphere
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where g is the gravitational acceleration at Earth’s surface, ρE is the average density of Earth, dQi is the area of the 
ith grid cell on a unit sphere, hn is the Love number h of degree n (the data source is given in the Supplementary 
Materials), Pn is the Legendre polynomial of degree n, and αij is the arc length between the ith and jth grid cell 
centers on a unit sphere. A set of m deformation samples gives rise to a linear system:

Δ =r C p (4)mx1 mxs sx1

where

∑=
π ρ

α=g
C

3dQ
4

h P (cos )
(5)

ij
j

E
n 1
10

n n ij

The Δri were populated by taking the inverse-variance-weighted average of the deformation signal for all GPS 
stations lying within the boundaries of the ith grid cell. The CMB pressure field was then modeled by inverting the 
linear system: = Δ− rp Cest

1 .
We compensated for the sparse spatial distribution of GPS stations by inverting six distinct linear systems, 

each with large grid cells (see Supplementary Table S1 for details). The layout for each inversion was staggered 
from the other inversion layouts. There was overlap between the grids of the different inversions, but by stagger-
ing the layout, each cell sampled a unique set of GPS stations (except for pole samples), and each linear system 
was fully determined. For each system, the grid layout on Earth’s surface was the same as that on the CMB.

The pressure samples from all six inversions were then combined onto the same sphere. Three of the inversions 
had samples at the North and South poles. In these cases, an inverse-variance-weighted average was used.

Geostrophic Flow. Flow solutions were derived from the pressure field based on the assumption of tan-
gentially geostrophic flow (where Coriolis and pressure gradient forces dominate) in the outermost core. The 
equation governing this assumption is14:

=
× ∇

ρ ω θ
u n p

2 cos (6)
H

OC E

where u is the flow vector, n is the unit normal vector, ∇H is the horizontal gradient operator, ρOC is the outer core’s 
density, and θ is the colatitude. The geostrophic assumption does not apply on the equator (note the cos θ factor 
in the denominator). As will be discussed in the following section, equatorial samples will be used to represent a 
broader region around the equator extending 15° to the North and South. Thus, the zonal component of the flow 
in the region around the equator is approximated by computing flow samples at the equator with θ set to 82.5°.

We used a discrete substitute for the horizontal gradient operator ∇H allowing a computation of the flow 
directly from equation (6). The details of the computation of ∇ pH  are included in the Supplementary Notes.

The flow at depth within the outer core was solved by considering a finite set of nested geostrophic cylinders15. 
Three cylindrical annuli were defined by considering their intersection with the CMB. Each annulus intersects the 
CMB at two latitudes (a polar edge and an equatorial edge) in both the northern and southern hemispheres 
(except for one equatorial annulus, which has just one edge in each hemisphere). The polar edge of the first annu-
lus was taken to be the boundary latitude of the cylinder tangent to the inner core (which is arccos(r /r )ICB CMB , 
where rICB is the radius of the inner core and rCMB is the CMB radius). The remaining edges were placed halfway 
between latitude bands of flow samples.

Each flow sample rests on the surface of one annuli. An angular velocity vector ω was associated with each 
flow vector u according to:

ω =
×
×

u
r

r u
r u (7)

where r is the position vector of the flow sample u. For each annulus, an inverse-variance-weighted average of the 
z-components ωz was taken, and the entire annulus was assumed to be moving with this angular velocity.

Outer Core Angular Momentum. Consider an annulus of outer core fluid lying outside a single cylinder 
that intersects the CMB at latitudes of ±ψo (Fig. 2). The axial moment of inertia Iz of this annulus is (see the 
Supplementary Notes for proof):

ψ =
πρ

ψ





−
ψ

− ψ





I ( )
4 r

5
sin 1 sin

3
cos

(8)
z o

OC CMB
5

o

2
o 4

o

The axial moment of inertia for each annulus was formed by evaluating equation (8) at the equatorial edge, 
and subtracting that value from equation (8) evaluated at the polar edge. For the equatorial annulus, only one 
evaluation was necessary.

Summing = ωL Iz z z over all the annuli gave the ΔLoc. The mean was then removed from the ΔLoc time series.

Gravitational Field Changes. The solid Earth deformation from CMB pressure anomalies causes gravita-
tional potential changes ΔU at Earth’s surface, detailed by Fang et al.7. We discretized these equations in a manner 
similar to equations (3–5), using a grid based on the combined set of pressure samples to forward-model the ΔU 
with a single linear system:
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Δ =U C p (9)mx1 2,mxs sx1

where

∑=
πρ

α=C
3dQ
4

k P (cos )
(10)

2,ij
j

E
n 1
10

n n ij

where kn is the Love number k of degree n. We express the gravity changes in terms of the normalized C20 
coefficient, which describes Earth’s oblateness16. Equivalent oblateness changes were computed as (see the 
Supplementary Notes for proof):

∑ φ φ=
π

− θ − θ − θ + θC r 5
8GM

U( )(cos cos cos cos )
(11)20

E

E
i i i1 i2

3
i2 i2

3
i1 i1

where rE is Earth’s radius, G is the gravitational constant, ME is Earth’s mass, and the coordinates with i1 and i2 
subscripts are the lower and upper boundaries of the ith grid cell, respectively. Values for these and other physical 
parameters used in this study are presented in Supplementary Table S2.

Error Estimation. We used a general formula17 describing the standard error estimate σf  of a function f of a 
set of variables βi:

σ = g Vg (12)f
T

where g is a column vector whose ith element is ∂ ∂βf/ i, and V is the (sample) covariance matrix among the βi. For 
vector quantities, error propagated through the magnitude only, and the cross product in equation (6) was con-
sidered equivalent to scalar multiplication when computing the gi. Error estimates for the deformation signal 
considered the λ and ϕ as uncorrelated fit parameters. The errors σλ and σϕ were taken to be the half-width of the 
68% confidence interval for the appropriate parameter.

Alternate Inversions. In order to test the robustness of the results, we considered two 12-year time periods: 
1 January 2002–2014 (the set used for Fig. 1), referred to as Inversion A, and 1 January 2004–2016, referred to as 
Inversion B.

Figure 2. The axial moments of inertia are defined for cylindrical annuli (grey shaded region) that lie outside a 
single cylinder.
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Results
Inversion A had a mean deformation signal amplitude of 0.99 mm and a median of 0.84 mm, while Inversion B 
had a mean signal amplitude of 0.90 mm and a median of 0.76 mm. The estimated pressure variations were on 
the order of 102 Pa, and the flow vectors on the order of 1km/yr. The flow solutions are generally westward and 
display a noticeable degree of symmetry about the equator. The flows can be broadly categorized as (1) Zonal, (2) 
Circulating, and (3) Chaotic. The former two are more common, and examples are shown in Fig. 3. The evolution 
over time of the flow solutions are shown in Supplementary Figures S2 and S3.

The fitted LOD signal at 5.85 years had an amplitude of 0.15 ms, corresponding to a ΔLMC signal about 
1025 J s in amplitude. The computed ΔLoc are on the same order of magnitude as the ΔLMC signal. The ΔLoc from 
Inversion A shows little phase relationship with the ΔLMC, while the ΔLOC from Inversion B is opposite the ΔLMC 
in phase (Fig. 4).

The computed interannual Earth oblateness (C20) signal is on the order of 10−12 (Fig. 5), about one order of 
magnitude smaller than the standard errors in the currently available data18.

Discussion and Conclusion
The LOD signal isolated in this study (see Supplementary Fig. S1) is about 25% larger than those from previous 
investigations, and is in general phase agreement since 20004,19,20. The symmetry of the flow solutions about the 
equator is consistent with Taylor’s constraint. The westward nature of the solutions suggests they may be associ-
ated with the westward drift of the magnetic field. The westward drift undergoes decadal fluctuations that have 
been inverted for the core’s angular momentum, which agree with expectations from decadal LOD signals21. 
The circulating flows resemble circulations in some magnetic field inversions, which have been interpreted as 
evidence of columnar flow22. One ensemble inversion of geomagnetic field observations has examined the sub-
decadal timescale and found evidence that the outer core is the cause of the ~6-year LOD signal23.

The ΔLOC from Inversion B (Fig. 4b) supports the idea that the ~6-year LOD signal is due to angular momen-
tum exchange between the solid Earth and outer core. However, this result is not robust; The ΔLOC from Inversion 
A (Fig. 4a) does not agree in phase with the prediction.

Figure 3. Geostrophic outer core flow solutions exhibit a) Circulating (taken from Inversion A), b) Zonal 
(taken from Inversion B) features at latitudes of ±60°. Flow vectors at the equator have been scaled down to 1/2 
of their original length for display, and should not be interpreted as representing the flow exactly at the equator. 
Instead, they approximate the zonal flow component in a broader equatorial region.

Figure 4. Outer core angular momentum solutions (a) from Inversion A and (b) from Inversion B. The latter 
agrees in phase with the prediction −ΔLMC (correlation coefficient = 0.79). Grey shading represents standard 
1-σ error estimates.
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The two inversions have a significant overlap in time (1 Jan 2004–2014), during which the ΔLOC solutions 
disagree. The most likely sources of this disagreement lie in the methodology: (1) The discretized form of the 
equations relating CMB pressure to surface deformation deviates from the continuous form due to the use of 
large grid cells, and (2) The effects of using of staggered grid layouts, as opposed to a single inversion, are not clear.

Both of these drawbacks may be mitigated in future investigations by modeling the CMB pressure field con-
tinuously with a spherical harmonic expansion up to some moderate degree. Given the results of this study, future 
work that models the CMB pressure field with deformation data should explore multiple inversion parameters to 
check the robustness of the results. Additional insights could come from comparing the C20 predictions with more 
precise C20 observations, if such data becomes available.

This study is based on the assumption that axial angular momentum of the outer core is mediated by geo-
strophic flows, which is believed to be a reasonable assumption24. A more complicated model incorporating 
magnetic coupling23 needs further investigation, but is beyond the scope of this study. Another effect that may 
compromise GPS-observed surface deformation due to core-mantle pressure coupling is the correction of load-
ing deformation due to atmospheric, oceanic, and hydrologic processes. The model we use for correction is from 
simulated models, not real measurements, and it is hard to estimate its error and uncertainty. We expect in the 
future when longer GPS time series and more reliable loading corrections are available, the surface deformation 
due to deep Earth processes can be more accurately observed by GPS.

The inverted outer core angular momentum using more recent (2004–2016) global GPS deformation data 
(Inversion B) indicates a reasonable agreement with the fitted LOD signal. However, we want to point out this 
study has not achieved a robust phase agreement and suffers from methodological limitations, precluding it from 
providing significant support for (or arguments against) the hypothesis of subdecadal core-mantle coupling. We 
have identified specific opportunities for methodological improvements and laid a foundation for their imple-
mentation, opening the door for the use of surface deformation data in Earth rotation studies.

Data Availability
All source data used in this study can be found in the References and links provided in the text. Data products 
from this study are available from Zenodo at https://doi.org/10.5281/zenodo.1157059.
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