Chemistry Faculty Publications

Document Type

Article

Abstract

The occurrences of two recurrent motifs in ribosomal RNA sequences, the Kink-turn and the C-loop, are examined in crystal structures and systematically compared with sequence alignments of rRNAs from the three kingdoms of life in order to identify the range of the structural and sequence variations. Isostericity Matrices are used to analyze structurally the sequence variations of the characteristic non-Watson-Crick base pairs for each motif. We show that Isostericity Matrices for non-Watson-Crick base pairs provide important tools for deriving the sequence signatures of recurrent motifs, for scoring and refining sequence alignments, and for determining whether motifs are conserved throughout evolution. The systematic use of Isostericity Matrices identifies the positions of the insertion or deletion of one or more nucleotides relative to the structurally characterized examples of motifs and, most importantly, specifies whether these changes result in new motifs. Thus, comparative analysis coupled with Isostericity Matrices allows one to produce and refine structural sequence alignments. The analysis, based on both sequence and structure, permits therefore the evaluation of the conservation of motifs across phylogeny and the derivation of rules of equivalence between structural motifs. The conservations observed in Isostericity Matrices form a predictive basis for identifying motifs in sequences.

Publication Date

2005

Publication Title

Nucleic Acids Research

Volume

33

Issue

8

Start Page No.

2395

End Page No.

2409

Publisher

Oxford University Press

ISSN

0305-1048

DOI

10.1093/nar/gki535

Included in

Chemistry Commons

Share

COinS