Chemistry Faculty Publications

Document Type

Article

Abstract

Femtosecond mid-IR transient absorption spectroscopy (TRIR) and time-dependent density functional theory (TD-DFT) calculations on Re(CO)(3)Cl(Me(2)BPTZ) [Me(2)BPTZ = 3,6-bis(5-methyl-2-pyridine)-1,2,4,5-tetrazine] are used to demonstrate that the lowest excited state of the complex is a triplet metal-to-ligand charge-transfer ((3)MLCT) state with a lifetime of 225 ps. The short excited-state lifetime is explained by the energy-gap taw. Vibrational cooling of the (3)MLCT state shows up as early-time dynamics (3.6 ps). The structural changes in the excited state are deduced from the frequency shifts in the TRIR vibrational bands. The vibrational frequencies of the CO groups increase upon excitation as a result of decreased back-bonding between the CO ligands and the oxidized Re center in the (3)MLCT state. The vibrational frequencies of the central tetrazine ring of Me(2)BPTZ decrease because of the decrease in the bond order upon reduction of the Me(2)BPTZ ligand in the (3)MLCT state. Interestingly, the TRIR signals from the pyridine moieties of Me2BPTZ were not detected. These results can be explained by localization of the electronic charge on the central tetrazine ring in the (3)MLCT state of Re(CO)(3)Cl(Me(2)BPTZ), as supported by TD-DFT calculations.

Publication Date

8-2009

Publication Title

Journal Of The American Chemical Society

DOI

https://doi.org/10.1021/ja903901n

Start Page No.

11656

End Page No.

11657

Included in

Chemistry Commons

COinS